IDEAS home Printed from https://ideas.repec.org/b/ito/pbooks/7652.html
   My bibliography  Save this book

Bayesian Inference - Recent Advantages

Editor

Listed:
  • Niansheng Tang

Abstract

With growing interest in data mining and its merits, including the incorporation of historical or experiential information into statistical analysis, Bayesian inference has become an important tool for analyzing complicated data and solving inverse problems in various fields such as artificial intelligence. This book introduces recent developments in Bayesian inference, and covers a variety of topics including robust Bayesian estimation, solving inverse problems via Bayesian theories, hierarchical Bayesian inference, and its applications for scattering experiments. We hope that this book will stimulate more extensive research on Bayesian fronts to include theories, methods, computational algorithms and applications in various fields such as data science, AI, machine learning, and causality analysis.

Individual chapters are listed in the "Chapters" tab

Suggested Citation

  • Niansheng Tang (ed.), 2022. "Bayesian Inference - Recent Advantages," Books, IntechOpen, number 7652, January-J.
  • Handle: RePEc:ito:pbooks:7652
    DOI: 10.5772/intechopen.97942
    as

    Download full text from publisher

    File URL: https://www.intechopen.com/books/7652
    Download Restriction: Book downloadable chapter-by-chapter

    File URL: https://libkey.io/10.5772/intechopen.97942?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Book Chapters

    The following chapters of this book are listed in IDEAS

    More about this item

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ito:pbooks:7652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Slobodan Momcilovic (email available below). General contact details of provider: http://www.intechopen.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.