IDEAS home Printed from https://ideas.repec.org/b/dau/thesis/123456789-15007.html
   My bibliography  Save this book

Multi-Agent Modelling for Distributed Intelligent Decision in Water Management

Editor

Listed:
  • Tsoukiàs, Alexis
  • Borri, Dino

Author

Listed:
  • Pluchinotta, Irene

Abstract

Water resource management can be a complex, uncertain and conflictual domain. It faces numerous problems in many regions of the world, such as the disparity of interests associated with the water resource, multiple decision makers, complex networks of administration, inoperative water distribution, various socio-political events and climate change. Consequently, environmental decision-making takes place in a highly interconnected system, in which neither the decisional ramifications nor the complexity of its impacts can be neglected. In the Apulia Region, water scarcity is the main rising problem and is affecting human and more-than-human communities.Water scarcity generates the need to enhance collaborative multi-agent decision-making processes. Researchers suggest that the “tragedy of commons” could be avoided when a shared resource is at stake, provided that communities interact and operate in a collective way and avoid, for example, the market rules constraints. This requires the development of dynamic decision-aiding tools. They should be capable to integrate the different problem frames held by the decision makers, to clarify the differences among those frames, to support the creation of a collaborative problem structuring process and to provide shared platforms and interaction spaces.In this regard, we built a dynamic interaction space (DIS), highlighting the operative criticalities and allowing the analysts to identify a shared problem definition. The emerging issues of gathering and exchanging knowledge and representing structured concepts can be solved through a combined approach. Multi-agent systems joined with system dynamics can provide unconventional alternatives that use physical and social components, with a particular focus on individual and collective behaviours in resource management with multiple decision makers.In our case study, the model was used as a platform for modelling multi-agent organizations, in order to support collective decision-making in water management. The model is capable of representing a distributed complex water management system, where simulated behaviours are based on field observations and on the participation of stakeholders. What is more, the multi–agent system approach enables the interaction and allows to formalize theIrene Pluchinotta – “Multi-Agent Modelling For Distributed Intelligent Decision In Water Management”iibehaviours of water users in the management process. A system dynamics modelling in an environment of interacting decision agents, allows us to explicitly consider the different frames and to simulate interactions when adopting a new policy. The model can showcase how the limited understanding of the interaction space affects the actions followed by each decision-makers and, finally, how it could lead to policy resistance mechanisms. In conclusion, the result is the richest possible picture of the existing problem situation that deals with irrigation water management in agricultural systems.

Suggested Citation

  • Pluchinotta, Irene, 2015. "Multi-Agent Modelling for Distributed Intelligent Decision in Water Management," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/15007 edited by Tsoukiàs, Alexis & Borri, Dino.
  • Handle: RePEc:dau:thesis:123456789/15007
    Note: dissertation
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irene Pluchinotta & Akin O. Kazakçi & Raffaele Giordano & Alexis Tsoukiàs, 2019. "Design Theory for Generating Alternatives in Public Decision Making Processes," Group Decision and Negotiation, Springer, vol. 28(2), pages 341-375, April.

    More about this item

    Keywords

    Planification régionale et environnementale; Aide à la décision; Système multi-Agents; Modélisation participative; Gestion de l'eau; Dynamique des systèmes; Interactions; Soutenabilité; Regional and environmental planning; Supporting decision-Making; Multi-Agent system; Participatory modelling; Water management; System dynamics; Sustainability;
    All these keywords.

    JEL classification:

    • Q28 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Government Policy
    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dau:thesis:123456789/15007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alexandre Faure (email available below). General contact details of provider: https://edirc.repec.org/data/daup9fr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.