IDEAS home Printed from https://ideas.repec.org/b/cup/cbooks/9780521807883.html
   My bibliography  Save this book

Matrix Calculus and Zero-One Matrices

Author

Listed:
  • Turkington,Darrell A.

Abstract

This 2002 book presents the reader with mathematical tools taken from matrix calculus and zero-one matrices and demonstrates how these tools greatly facilitate the application of classical statistical procedures to econometric models. The matrix calculus results are derived from a few basic rules that are generalizations of the rules of ordinary calculus. These results are summarized in a useful table. Well-known zero-one matrices, together with some newer ones, are defined, their mathematical roles explained, and their useful properties presented. The basic building blocks of classical statistics, namely the score vector, the information matrix, and the Cramer-Rao lower bound, are obtained for a sequence of linear econometric models of increasing statistical complexity. From these are obtained interactive interpretations of maximum likelihood estimators, linking them with efficient econometric estimators. Classical test statistics are also derived and compared for hypotheses of interest.

Suggested Citation

  • Turkington,Darrell A., 2002. "Matrix Calculus and Zero-One Matrices," Cambridge Books, Cambridge University Press, number 9780521807883.
  • Handle: RePEc:cup:cbooks:9780521807883
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harman, Radoslav & Filová, Lenka, 2014. "Computing efficient exact designs of experiments using integer quadratic programming," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1159-1167.
    2. D. Stephen G. Pollock, 2021. "Multidimensional Arrays, Indices and Kronecker Products," Econometrics, MDPI, vol. 9(2), pages 1-15, April.
    3. Stephen Pollock, 2011. "On Kronecker Products, Tensor Products And Matrix Differential Calculus," Discussion Papers in Economics 11/34, Division of Economics, School of Business, University of Leicester, revised Jul 2011.
    4. Maller, Ross & Roberts, Steven & Tourky, Rabee, 2016. "The large-sample distribution of the maximum Sharpe ratio with and without short sales," Journal of Econometrics, Elsevier, vol. 194(1), pages 138-152.
    5. Philip L. H. Yu & W. K. Li & F. C. Ng, 2017. "The Generalized Conditional Autoregressive Wishart Model for Multivariate Realized Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 513-527, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:cbooks:9780521807883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ruth Austin (email available below). General contact details of provider: https://www.cambridge.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.