IDEAS home Printed from https://ideas.repec.org/a/zna/indecs/v14y2016i3p314-321.html
   My bibliography  Save this article

A roadmap for a computational theory of the value of information in origin of life questions

Author

Listed:
  • Soumya Banerjee

    (Broad Institute of MIT and Harvard, Cambridge, USA
    Ronin Institute, Montclair, USA
    Complex Biological Systems Alliance, North Andover, USA)

Abstract

Information plays a critical role in complex biological systems. Complex systems like immune systems and ant colonies co-ordinate heterogeneous components in a decentralized fashion. How do these distributed decentralized systems function? One key component is how these complex systems efficiently process information. These complex systems have an architecture for integrating and processing information coming in from various sources and points to the value of information in the functioning of different complex biological systems. This article proposes a role for information processing in questions around the origin of life and suggests how computational simulations may yield insights into questions related to the origin of life. Such a computational model of the origin of life would unify thermodynamics with information processing and we would gain an appreciation of why proteins and nucleotides evolved as the substrate of computation and information processing in living systems that we see on Earth. Answers to questions like these may give us insights into non-carbon based forms of life that we could search for outside Earth. We hypothesize that carbon-based life forms are only one amongst a continuum of life-like systems in the universe. Investigations into the role of computational substrates that allow information processing is important and could yield insights into: 1) novel non-carbon based computational substrates that may have "life-like" properties, and 2) how life may have actually originated from non-life on Earth. Life may exist as a continuum between non-life and life and we may have to revise our notion of life and how common it is in the universe. Looking at life or life-like phenomenon through the lens of information theory may yield a broader view of life.

Suggested Citation

  • Soumya Banerjee, 2016. "A roadmap for a computational theory of the value of information in origin of life questions," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 14(3), pages 314-321.
  • Handle: RePEc:zna:indecs:v:14:y:2016:i:3:p:314-321
    as

    Download full text from publisher

    File URL: http://indecs.eu/2016/indecs2016-pp314-321.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:zna:indecs:v:19:y:2021:i:4:p:31-41 is not listed on IDEAS
    2. Soumya Banerjee, 2021. "Emergent rules of computation in the Universe lead to life and consciousness: a computational framework for consciousness," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 19(1), pages 31-41.
    3. repec:zna:indecs:v:15:y:2017:i:2:p:190-198 is not listed on IDEAS
    4. Soumya Banerjee, 2020. "A framework for designing compassionate and ethical artificial intelligence and artificial intelligence and artificial consciousness," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 18(2A), pages 85-95.
    5. Soumya Banerjee, 2017. "A computational technique to estimate within-host productively infected cell lifetimes in emerging viral infections," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 15(3), pages 190-198.

    More about this item

    Keywords

    origin of life; artificial life; life-like systems; information theory; reaction-diffusion systems;
    All these keywords.

    JEL classification:

    • O10 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - General
    • O35 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Social Innovation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zna:indecs:v:14:y:2016:i:3:p:314-321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Josip Stepanic (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.