Author
Listed:
- Rodeano Roslee
(Universiti Malaysia Sabah, Natural Disaster Research Centre (NDRC), UMS Road, 88400 Kota Kinabalu, Sabah, Malaysia)
- Jeffery Anak Pirah
(Alamega Konsult, 2nd Floor, Block B, Lot 12-2, Plaza Utama, Jalan Penampang By Pass, 88300 Kota Kinabalu, Sabah, Malaysia.)
- Mohd Fauzi Zikiri
(Department of Public of Work (Sabah State), Slope Branch, Sembulan Road, 88538 Kota Kinabalu, Sabah, Malaysia.)
- Ahmad Nazrul Madri
(Universiti Malaysia Sabah, Faculty of Science and Natural Resources, UMS Road, 88400 Kota Kinabalu, Sabah, Malaysia)
Abstract
Rock Mass Classification Systems (RMCS) can be of considerable use in the initial stage of a project when little or no detailed information is available. There is a large number of RMCS developed for general purposes but also for specific applications such as Rock Quality Designation (RQD), Rock Mass Rating (RMR), Rock Structure Rating (RSR), Geological Strength Index (GSI), Slope Mass Rating (SMR), etc. In this paper, we present the results of the applicability of the Rock Mass Rating (RMR) System for the Trusmadi Formation in Sabah, Malaysia. The RMR system is a RMCS incorporated with five (5) parameters: Strength of intact rock material, Rock Quality Designation (RQD), Spacing of joints, Condition of joints, and Groundwater conditions. A total of ten (10) locations were selected on the basis of exposures of the lithology and slope condition of the Trusmadi Formation. Trusmadi Formation is Paleocene to Eocene in aged. The Trusmadi Formation generally shows two major structural orientations NW-SE and NE-SW. Trusmadi Formation is characterized by the present of dark colour argillaceous rocks, siltstone and thin-bedded turbidite in well-stratified sequence. Some of the Trusmadi Formation rocks have been metamorphosed to low grade of the greenish-schist facies; the sediment has become slate, phyllite and metarenite. Cataclastic rocks are widespread and occur as black phyllonite enclosing arenitic and lutitic boudins with diameter up to a meter or demarcating thin to thicker fault zones or as flaser zones with hardly any finer grain matrix or as zones of closely spaced fractures. Quartz and calcite veins are quite widespread within the crack deformed on sandstone beds. The shale is dark grey when fresh but changes light grey to brownish when weathered. The RMR system for 10 outcrops ranges from 33.0 to 50.0 and its classified as “Fair” (Class III) to “Poor” (Class IV) rocks. The Fair Rock (Class III) recommended that the excavation should be top heading and bench 1.5 m – 3 m advance in the top heading. Support should be commencing after each blast and complete support 10 m from face. Rock bolts should be systematic with 4 m long spaced 1.5 m – 2 m in crown and walls with wire mesh in crown. Shotcrete should be 50 mm – 100 mm in crown and 30 mm in sides. While for the Poor Rock (Class IV), the excavation should be top heading and bench 1.0 m – 1.5 m advance in top heading. Support should be installed concurrently with excavation, 10 m from face. Rock bolt should be systematic with 4 m – 5 m long, spaced 1.5 m – 1.5 m in crown and walls with wire mesh. Shotcrete of 100 m – 150 mm in crown and 100 mm in sides. The steel sets should be light to medium ribs spaced 1.5 m only when required.
Suggested Citation
Rodeano Roslee & Jeffery Anak Pirah & Mohd Fauzi Zikiri & Ahmad Nazrul Madri, 2020.
"Applicability Of The Rock Mass Rating (RMR) System For The Trusmadi Formation At Sabah, Malaysia,"
Malaysian Journal of Geosciences (MJG), Zibeline International Publishing, vol. 4(2), pages 96-102, November.
Handle:
RePEc:zib:zbnmjg:v:4:y:2020:i:2:p:96-102
DOI: 10.26480/mjg.02.2020.96.102
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zbnmjg:v:4:y:2020:i:2:p:96-102. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing (email available below). General contact details of provider: https://myjgeosc.com/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.