IDEAS home Printed from https://ideas.repec.org/a/zib/zbngwk/v5y2021i1p1-11.html
   My bibliography  Save this article

A Hybrid Algorithm To Solve The Fixed Charge Solid Location And Transportation Problem

Author

Listed:
  • Gbeminiyi John Oyewole

    (Department of Industrial and Systems Engineering, University of Pretoria, Pretoria 0002, South Africa.)

  • Olufemi Adetunji

    (Department of Industrial and Systems Engineering, University of Pretoria, Pretoria 0002, South Africa.)

Abstract

In this paper, we propose a Hybrid Algorithm (HA) to solve the Fixed Charge Solid Location and Transportation problem (FCSLTP). The FCSLTP considers the cost of facility location and route fixed costs during transportation planning or load consolidation. The HA integrates two heuristics into the Genetic Algorithm framework to solve the FCSLTP. Genetic operations are used to select the best combination of facility locations while a greedy heuristic which uses some cost relaxations are used for the initial load allocation. An improvement heuristic, a modified stepping stone method, is then used to consolidate load allocations to realize further possible cost savings. Parameters used for the genetic operations were decided through preliminary studies. Computational studies using randomly generated data were performed to compare the HA solutions with the solutions obtained using CPLEX, a commercial solver. Performance comparison was done based on the quality of solution and computing time. The results suggest the solution approach is competitive.

Suggested Citation

  • Gbeminiyi John Oyewole & Olufemi Adetunji, 2021. "A Hybrid Algorithm To Solve The Fixed Charge Solid Location And Transportation Problem," Engineering Heritage Journal (GWK), Zibeline International Publishing, vol. 5(1), pages 1-11, March.
  • Handle: RePEc:zib:zbngwk:v:5:y:2021:i:1:p:1-11
    DOI: 10.26480/gwk.01.2021.01.11
    as

    Download full text from publisher

    File URL: https://enggheritage.com/download/14188/
    Download Restriction: no

    File URL: https://libkey.io/10.26480/gwk.01.2021.01.11?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Herminia I. Calvete & Carmen Galé & José A. Iranzo, 2016. "An improved evolutionary algorithm for the two-stage transportation problem with fixed charge at depots," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(1), pages 189-206, January.
    2. A. N. Balaji & J. Mukund Nilakantan & Izabela Nielsen & N. Jawahar & S. G. Ponnambalam, 2019. "Solving fixed charge transportation problem with truck load constraint using metaheuristics," Annals of Operations Research, Springer, vol. 273(1), pages 207-236, February.
    3. Jawahar, N. & Balaji, A.N., 2009. "A genetic algorithm for the two-stage supply chain distribution problem associated with a fixed charge," European Journal of Operational Research, Elsevier, vol. 194(2), pages 496-537, April.
    4. CERIA, Sebastian & CORDIER, Cécile & MARCHAND, Hugues & WOLSEY, Laurence A., 1998. "Cutting planes for integer programs with general integer variables," LIDAM Reprints CORE 1334, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Guastaroba, G. & Speranza, M.G., 2014. "A heuristic for BILP problems: The Single Source Capacitated Facility Location Problem," European Journal of Operational Research, Elsevier, vol. 238(2), pages 438-450.
    6. Fischetti, Matteo & Ljubić, Ivana & Sinnl, Markus, 2016. "Benders decomposition without separability: A computational study for capacitated facility location problems," European Journal of Operational Research, Elsevier, vol. 253(3), pages 557-569.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weninger, Dieter & Wolsey, Laurence A., 2023. "Benders-type branch-and-cut algorithms for capacitated facility location with single-sourcing," European Journal of Operational Research, Elsevier, vol. 310(1), pages 84-99.
    2. Filippi, C. & Guastaroba, G. & Speranza, M.G., 2021. "On single-source capacitated facility location with cost and fairness objectives," European Journal of Operational Research, Elsevier, vol. 289(3), pages 959-974.
    3. Han, Jialin & Zhang, Jiaxiang & Zeng, Bing & Mao, Mingsong, 2021. "Optimizing dynamic facility location-allocation for agricultural machinery maintenance using Benders decomposition," Omega, Elsevier, vol. 105(C).
    4. Ovidiu Cosma & Petrică C. Pop & Cosmin Sabo, 2020. "An Efficient Hybrid Genetic Approach for Solving the Two-Stage Supply Chain Network Design Problem with Fixed Costs," Mathematics, MDPI, vol. 8(5), pages 1-20, May.
    5. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    6. Camilo Ortiz-Astorquiza & Ivan Contreras & Gilbert Laporte, 2019. "An Exact Algorithm for Multilevel Uncapacitated Facility Location," Transportation Science, INFORMS, vol. 53(4), pages 1085-1106, July.
    7. Yang, Yongjian & Yin, Yunqiang & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Dhamotharan, Lalitha, 2023. "Distributionally robust multi-period location-allocation with multiple resources and capacity levels in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1042-1062.
    8. Lin, Yun Hui & Wang, Yuan & Lee, Loo Hay & Chew, Ek Peng, 2022. "Omnichannel facility location and fulfillment optimization," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 187-209.
    9. Detienne, Boris & Lefebvre, Henri & Malaguti, Enrico & Monaci, Michele, 2024. "Adjustable robust optimization with objective uncertainty," European Journal of Operational Research, Elsevier, vol. 312(1), pages 373-384.
    10. Quentin Louveaux & Laurence Wolsey, 2007. "Lifting, superadditivity, mixed integer rounding and single node flow sets revisited," Annals of Operations Research, Springer, vol. 153(1), pages 47-77, September.
    11. Manfred Padberg, 2005. "Classical Cuts for Mixed-Integer Programming and Branch-and-Cut," Annals of Operations Research, Springer, vol. 139(1), pages 321-352, October.
    12. Li, Yantong & Chu, Feng & Côté, Jean-François & Coelho, Leandro C. & Chu, Chengbin, 2020. "The multi-plant perishable food production routing with packaging consideration," International Journal of Production Economics, Elsevier, vol. 221(C).
    13. Dolores R. Santos-Peñate & Clara M. Campos-Rodríguez & José A. Moreno-Pérez, 2020. "A Kernel Search Matheuristic to Solve The Discrete Leader-Follower Location Problem," Networks and Spatial Economics, Springer, vol. 20(1), pages 73-98, March.
    14. Camur, Mustafa C. & Sharkey, Thomas C. & Vogiatzis, Chrysafis, 2023. "The stochastic pseudo-star degree centrality problem," European Journal of Operational Research, Elsevier, vol. 308(2), pages 525-539.
    15. Filippi, C. & Guastaroba, G. & Speranza, M.G., 2016. "A heuristic framework for the bi-objective enhanced index tracking problem," Omega, Elsevier, vol. 65(C), pages 122-137.
    16. Fragkos, Ioannis & Cordeau, Jean-François & Jans, Raf, 2021. "Decomposition methods for large-scale network expansion problems," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 60-80.
    17. Christopher Hojny & Tristan Gally & Oliver Habeck & Hendrik Lüthen & Frederic Matter & Marc E. Pfetsch & Andreas Schmitt, 2020. "Knapsack polytopes: a survey," Annals of Operations Research, Springer, vol. 292(1), pages 469-517, September.
    18. L. X. Cui, 2016. "Joint optimization of production planning and supplier selection incorporating customer flexibility: an improved genetic approach," Journal of Intelligent Manufacturing, Springer, vol. 27(5), pages 1017-1035, October.
    19. Mustafa C. Camur & Thomas Sharkey & Chrysafis Vogiatzis, 2022. "The Star Degree Centrality Problem: A Decomposition Approach," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 93-112, January.
    20. Ahmed Mostafa & Kamal Moustafa & Raafat Elshaer, 2023. "Impact of Fixed Cost Increase on the Optimization of Two-Stage Sustainable Supply Chain Networks," Sustainability, MDPI, vol. 15(18), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zbngwk:v:5:y:2021:i:1:p:1-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing (email available below). General contact details of provider: https://enggheritage.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.