IDEAS home Printed from https://ideas.repec.org/a/zib/zbngwk/v2y2018i1p19-23.html
   My bibliography  Save this article

Energy Recovery From Municipal Solid Waste Incinerati on Benghazi - Case Study

Author

Listed:
  • Monaem Elmnifi

    (Department of Mechanical Engineering, Benghazi University, Libya)

  • Moneer Alshelmany

    (Department of Electricity Engineering, Benghazi University, Libya)

  • Mabroka ALhammaly

    (Department of Structures and Environmental Engineering, University of Agriculture Faisalabad, Pakistan)

  • Otman Imrayed

    (Department of Electrical & Electronics Engineering, Sirte University, Libya)

  • Ch Arslan

Abstract

Waste-to-Energy (WTE) is a viable option for Municipal Solid Waste (MSW) management and a renewable energy source. MSW is a chronic problem in Libya and more specifically in Libya Urban areas. The MSW practices in Libya are simply done by collecting the waste and dumping it in open landfill sites. Libya is considering WTE as a potential renewable energy source that can contribute to electricity demand. This research aims to assess potential contribution of WTE facility to meet electricity demand in the Benghazi city and to provide an alternative solution to landfills. Scenario for WTE utilization was developed: Mass Burn the analyses were completed for Benghazi city; with current total population. The results show that Benghazi has the potential to produce about 19 MW of electricity based on incineration scenario the year 2030. These values are based on theoretical ideals and help in identifying the optimal WTE techniques for each city.

Suggested Citation

  • Monaem Elmnifi & Moneer Alshelmany & Mabroka ALhammaly & Otman Imrayed & Ch Arslan, 2018. "Energy Recovery From Municipal Solid Waste Incinerati on Benghazi - Case Study," Engineering Heritage Journal (GWK), Zibeline International Publishing, vol. 2(1), pages 19-23, January.
  • Handle: RePEc:zib:zbngwk:v:2:y:2018:i:1:p:19-23
    DOI: 10.26480/gwk.01.2018.19.23
    as

    Download full text from publisher

    File URL: https://enggheritage.com/download/13758/
    Download Restriction: no

    File URL: https://libkey.io/10.26480/gwk.01.2018.19.23?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ouda, O.K.M. & Raza, S.A. & Nizami, A.S. & Rehan, M. & Al-Waked, R. & Korres, N.E., 2016. "Waste to energy potential: A case study of Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 328-340.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Meng & Infante Ferreira, Carlos A., 2017. "Absorption heat pump cycles with NH3 – ionic liquid working pairs," Applied Energy, Elsevier, vol. 204(C), pages 819-830.
    2. Liu, Xiuli & Guo, Pibin & Yue, Xiaohang & Qi, Xiaoyan & Guo, Shufeng & Zhou, Xijun, 2021. "Measuring metabolic efficiency of the Beijing–Tianjin–Hebei urban agglomeration: A slacks-based measures method," Resources Policy, Elsevier, vol. 70(C).
    3. Santiago Alzate-Arias & Álvaro Jaramillo-Duque & Fernando Villada & Bonie Restrepo-Cuestas, 2018. "Assessment of Government Incentives for Energy from Waste in Colombia," Sustainability, MDPI, vol. 10(4), pages 1-16, April.
    4. Sandylove Afrane & Jeffrey Dankwa Ampah & Ephraim Bonah Agyekum & Prince Oppong Amoh & Abdulfatah Abdu Yusuf & Islam Md Rizwanul Fattah & Ebenezer Agbozo & Elmazeg Elgamli & Mokhtar Shouran & Guozhu M, 2022. "Integrated AHP-TOPSIS under a Fuzzy Environment for the Selection of Waste-To-Energy Technologies in Ghana: A Performance Analysis and Socio-Enviro-Economic Feasibility Study," IJERPH, MDPI, vol. 19(14), pages 1-31, July.
    5. Malinauskaite, J. & Jouhara, H. & Czajczyńska, D. & Stanchev, P. & Katsou, E. & Rostkowski, P. & Thorne, R.J. & Colón, J. & Ponsá, S. & Al-Mansour, F. & Anguilano, L. & Krzyżyńska, R. & López, I.C. & , 2017. "Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe," Energy, Elsevier, vol. 141(C), pages 2013-2044.
    6. Abdulrahman Abdeljaber & Rawan Zannerni & Wedad Masoud & Mohamed Abdallah & Lisandra Rocha-Meneses, 2022. "Eco-Efficiency Analysis of Integrated Waste Management Strategies Based on Gasification and Mechanical Biological Treatment," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    7. Sajid, Muhammad & Raheem, Abdul & Ullah, Naeem & Asim, Muhammad & Ur Rehman, Muhammad Saif & Ali, Nisar, 2022. "Gasification of municipal solid waste: Progress, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Florin Constantin Mihai & Maria-Grazie Gnoni & Christia Meidiana & Chukwunonye Ezeah & Valerio Elia, 2019. "Waste Electrical and Electronic Equipment (WEEE): Flows, Quantities, and Management—A Global Scenario," Post-Print hal-02276468, HAL.
    9. Dehwah, Ammar H.A. & Asif, Muhammad, 2019. "Assessment of net energy contribution to buildings by rooftop photovoltaic systems in hot-humid climates," Renewable Energy, Elsevier, vol. 131(C), pages 1288-1299.
    10. Shumal, Mohammad & Taghipour Jahromi, Ahmad Reza & Ferdowsi, Ali & Mehdi Noorbakhsh Dehkordi, Seyed Mohammad & Moloudian, Amin & Dehnavi, Ali, 2020. "Comprehensive analysis of municipal solid waste rejected fractions as a source of Refused Derived Fuel in developing countries (case study of Isfahan- Iran): Environmental Impact and sustainable devel," Renewable Energy, Elsevier, vol. 146(C), pages 404-413.
    11. Rajaeifar, Mohammad Ali & Ghanavati, Hossein & Dashti, Behrouz B. & Heijungs, Reinout & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2017. "Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 414-439.
    12. Mohamad G. Abiad & Lokman I. Meho, 2018. "Food loss and food waste research in the Arab world: a systematic review," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(2), pages 311-322, April.
    13. Mirza Barjees Baig & Bader Alhafi Alotaibi & Khodran Alzahrani & David Pearson & Ghedeir M. Alshammari & Ashfaq Ahmad Shah, 2022. "Food Waste in Saudi Arabia: Causes, Consequences, and Combating Measures," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    14. Laith A. Hadidi & Ahmed Ghaithan & Awsan Mohammed & Khalaf Al-Ofi, 2020. "Deploying Municipal Solid Waste Management 3R-WTE Framework in Saudi Arabia: Challenges and Future," Sustainability, MDPI, vol. 12(14), pages 1-18, July.
    15. Hao, Jian Li & Ma, Wenting, 2023. "Evaluating carbon emissions of construction and demolition waste in building energy retrofit projects," Energy, Elsevier, vol. 281(C).
    16. Hameed, Zeeshan & Aslam, Muhammad & Khan, Zakir & Maqsood, Khuram & Atabani, A.E. & Ghauri, Moinuddin & Khurram, Muhammad Shahzad & Rehan, Mohammad & Nizami, Abdul-Sattar, 2021. "Gasification of municipal solid waste blends with biomass for energy production and resources recovery: Current status, hybrid technologies and innovative prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    17. Alobaid, Falah & Al-Maliki, Wisam Abed Kattea & Lanz, Thomas & Haaf, Martin & Brachthäuser, Andreas & Epple, Bernd & Zorbach, Ingo, 2018. "Dynamic simulation of a municipal solid waste incinerator," Energy, Elsevier, vol. 149(C), pages 230-249.
    18. Khatri, Krishan Lal & Muhammad, Amir Raza & Soomro, Shakir Ali & Tunio, Nadeem Ahmed & Ali, Muhammad Mubarak, 2021. "Investigation of possible solid waste power potential for distributed generation development to overcome the power crises of Karachi city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    19. Nizami, A.S. & Shahzad, K. & Rehan, M. & Ouda, O.K.M. & Khan, M.Z. & Ismail, I.M.I. & Almeelbi, T. & Basahi, J.M. & Demirbas, A., 2017. "Developing waste biorefinery in Makkah: A way forward to convert urban waste into renewable energy," Applied Energy, Elsevier, vol. 186(P2), pages 189-196.
    20. Zhou, Ziqiao & Zhang, Lin, 2022. "Sustainable waste management and waste to energy: Valuation of energy potential of MSW in the Greater Bay Area of China," Energy Policy, Elsevier, vol. 163(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zbngwk:v:2:y:2018:i:1:p:19-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing (email available below). General contact details of provider: https://enggheritage.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.