IDEAS home Printed from https://ideas.repec.org/a/zib/zbnasm/v1y2017i2p1-4.html
   My bibliography  Save this article

A Study On Water Quality From Langat River, Selangor

Author

Listed:
  • Alfarooq O. Basheer

    (School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,43600 Bangi, Selangor, Malaysia)

  • Marlia M. Hanafiah

    (School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,43600 Bangi, Selangor, Malaysia Author-Name: Mahmood J. Abdulhasan
    School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,43600 Bangi, Selangor, Malaysia)

Abstract

Langat River is one of the main sources of water supply for Selangor state. This study was conducted to determine the water quality status of Langat River in Selangor based on WQI and INWQS. Water sampling was conducted at ten stations for two seasons; dry season during February 2016 and wet season during November 2016. Parameters included in this study are temperature, pH, DO (Dissolved Oxygen), Conductivity, TSS (Total Suspended Soil), TDS (Total Dissolved Oxygen), BOD (Biochemical Oxygen demand) and Heavy metals. The laboratory analysis was carried out according to the HACH and APHA methods. This study found that the water quality of Langat River is classified in class III for both sampling times. Reduction in WQI value in the river was observed mainly due to human activities such as industrial and services building producing wastes. Based on results and statistical analysis, the values of pH, COD, Conductivity, TSS and TDS in the study area were influenced by the nearby industrial constructions. In dry seasons, low volume and stagnant water could create entropic conditions in the river. Water quality which classified in class III were considered as slightly polluted. Langat River can be used as supply if only conventional treatment was done. Water quality which classified in class III were considered as slightly polluted. Langat River can be used as water supply if only conventional treatment is carried out.

Suggested Citation

  • Alfarooq O. Basheer & Marlia M. Hanafiah, 2017. "A Study On Water Quality From Langat River, Selangor," Acta Scientifica Malaysia (ASM), Zibeline International Publishing, vol. 1(2), pages 1-4, October.
  • Handle: RePEc:zib:zbnasm:v:1:y:2017:i:2:p:1-4
    DOI: 10.26480/asm.02.2017.01.04
    as

    Download full text from publisher

    File URL: https://actascientificamalaysia.com/download/520/
    Download Restriction: no

    File URL: https://libkey.io/10.26480/asm.02.2017.01.04?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bouwer, Herman, 2000. "Integrated water management: emerging issues and challenges," Agricultural Water Management, Elsevier, vol. 45(3), pages 217-228, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavitra Kumar & Sai Hin Lai & Jee Khai Wong & Nuruol Syuhadaa Mohd & Md Rowshon Kamal & Haitham Abdulmohsin Afan & Ali Najah Ahmed & Mohsen Sherif & Ahmed Sefelnasr & Ahmed El-Shafie, 2020. "Review of Nitrogen Compounds Prediction in Water Bodies Using Artificial Neural Networks and Other Models," Sustainability, MDPI, vol. 12(11), pages 1-26, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antony, Edna & Singandhupe, R. B., 2004. "Impact of drip and surface irrigation on growth, yield and WUE of capsicum (Capsicum annum L.)," Agricultural Water Management, Elsevier, vol. 65(2), pages 121-132, March.
    2. Morten Graversgaard & Beatrice Hedelin & Laurence Smith & Flemming Gertz & Anker Lajer Højberg & John Langford & Grit Martinez & Erik Mostert & Emilia Ptak & Heidi Peterson & Nico Stelljes & Cors Van , 2018. "Opportunities and Barriers for Water Co-Governance—A Critical Analysis of Seven Cases of Diffuse Water Pollution from Agriculture in Europe, Australia and North America," Sustainability, MDPI, vol. 10(5), pages 1-39, May.
    3. Wichelns, Dennis & Oster, J.D., 2006. "Sustainable irrigation is necessary and achievable, but direct costs and environmental impacts can be substantial," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 114-127, November.
    4. Sacchidananda Mukherjee & Prakash Nelliyat, 2006. "Ground Water Pollution and Emerging Environmental Challenges of Industrial Effluent Irrigation: A Case Study of Mettupalayam Taluk, Tamilnadu," Working Papers 2006-07, Madras School of Economics,Chennai,India.
    5. Sauer, Timm & Havlik, Petr & Schneider, Uwe A. & Kindermann, Georg E. & Obersteiner, Michael, 2008. "Agriculture, Population, Land and Water Scarcity in a Changing World – The Role of Irrigation," 2008 International Congress, August 26-29, 2008, Ghent, Belgium 44271, European Association of Agricultural Economists.
    6. Bastiaanssen, W. G. M. & Chandrapala, L., 2003. "Water balance variability across Sri Lanka for assessing agricultural and environmental water use," Agricultural Water Management, Elsevier, vol. 58(2), pages 171-192, February.
    7. Marta Antonelli & Martina Sartori, 2014. "Unfolding the Potential of the Virtual Water Concept. What is still under debate?," IEFE Working Papers 74, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    8. Banejad, H. & Souri, H., 2003. "Sewage dilution as a management alternative in agricultural reuse of wastewater," IWMI Books, Reports H033352, International Water Management Institute.
    9. Alam, Mohammad Faiz & Pavelic, Paul, 2020. "Underground Transfer of Floods for Irrigation (UTFI): exploring potential at the global scale," IWMI Research Reports H050008, International Water Management Institute.
    10. Dimaranan, Betina & Duc, Le Thuc & Martin, Will, 2005. "Potential Economic Impacts of Merchandise Trade Liberalization under Viet Nam’s Accession to the WTO," Conference papers 331403, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    11. Raats, Peter A.C. & Feddes, Reinder A., 2006. "Contributions by Jans Wesseling, Jan van Schilfgaarde, and Herman Bouwer to effective and responsible water management in agriculture," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 9-29, November.
    12. Tzanakakis, V.A. & Angelakis, A.N., 2011. "Chemical exergy as a unified and objective indicator in the assessment and optimization of land treatment systems," Ecological Modelling, Elsevier, vol. 222(17), pages 3082-3091.
    13. Maria Berrittella & Katrin Rehdanz & Arjen Y. Hoekstra & Roberto Roson & Richard S.J. Tol, 2006. "The Economic Impact Of Restricted Water Supply: A Computable General Equilibrium Analysis," Working Papers FNU-93, Research unit Sustainability and Global Change, Hamburg University, revised Jul 2006.
    14. Wegerich, Kai & Olsson, Oliver & Froebrich, Jochen, 2007. "Reliving the past in a changed environment: Hydropower ambitions, opportunities and constraints in Tajikistan," Energy Policy, Elsevier, vol. 35(7), pages 3815-3825, July.
    15. Chowdary, V.M. & Rao, N.H. & Sarma, P.B.S., 2005. "Decision support framework for assessment of non-point-source pollution of groundwater in large irrigation projects," Agricultural Water Management, Elsevier, vol. 75(3), pages 194-225, July.
    16. Konstantin Kogan & Charles Tapiero, 2010. "Water supply and consumption uncertainty: a conflict-equilibrium," Annals of Operations Research, Springer, vol. 181(1), pages 199-217, December.
    17. Samarasinghe, G. B., 2003. "Growth and yields of Sri Lanka's major crops interpreted from public domain satellites," Agricultural Water Management, Elsevier, vol. 58(2), pages 145-157, February.
    18. Mahfuzur Khan & Clifford Voss & Winston Yu & Holly Michael, 2014. "Water Resources Management in the Ganges Basin: A Comparison of Three Strategies for Conjunctive Use of Groundwater and Surface Water," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1235-1250, March.
    19. David Martínez-Granados & José Maestre-Valero & Javier Calatrava & Victoriano Martínez-Alvarez, 2011. "The Economic Impact of Water Evaporation Losses from Water Reservoirs in the Segura Basin, SE Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3153-3175, October.
    20. Rong Gan & Changzheng Chen & Jie Tao & Yongqiang Shi, 2021. "Hydrological Process Simulation of Sluice-Controlled Rivers in the Plains Area of China Based on an Improved SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1817-1835, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zbnasm:v:1:y:2017:i:2:p:1-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing (email available below). General contact details of provider: https://actascientificamalaysia.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.