IDEAS home Printed from https://ideas.repec.org/a/zib/zbacmy/v2y2018i2p23-28.html
   My bibliography  Save this article

Influence Of Tree Plantation Gmelina Arborea And Gliricidia Sepium On Soil Physico-Chemical Properties In Abakaliki, Southeast, Nigeria

Author

Listed:
  • Henry Obiahu Otai

    (Department of Environmental Science, Addis Ababa University, Ethiopia)

  • Daniel Aja

    (Department of Environmental Science, Addis Ababa University, Ethiopia)

  • Chukwuebuka Christopher Okolo

    (Department of Land Resources Management and Environmental Protection, Mekelle University Ethiopia)

  • Chizoba Obianuju Oranu

    (Department of Agricultural Economics, University of Nigeria Nsukka, NigeriaAuthor-Name:James Nte Nwite
    Department of Soil Science and Environmental Management, Ebonyi State University Abakaliki, Nigeria)

Abstract

The study examined the influence of the two most prominent exotic species in Abakaliki, southeast, Nigeria and the nutrient accumulation on the soils. The plantations species were Gmelina arborea (Gmelina) established in 1988 and Gliricidia sepium established in the same year. The treatments were: Gmelina Plantation Area (GmPA), Gmelina Free Area GmFA, Gliricidia Plantation Area (GlPA), Gliricidia Free Area GlFA. The experiment was established as a Randomized Complete Block Design (RCBD) with four (4) treatments replicated six (6) times. Ground-truthing survey was carried out using a Geographical Positioning System (GPS) and the point data were keyed in into arc GIS software to delineate the study area. The Gmelina and Gliricidia plantation areas and their respective free areas were mapped into 6 plots, and on each plot, sampling points were randomly established, soil samples were taken using soil auger within 0-20cm soil depth. The overall results of exchangeable bases of the soil indicates that calcium (Ca), magnesium (Mg), cation exchange capacity (CEC), base saturation (BS), exchangeable sodium percentage (ESP) and sodium adsorption ratio (SAR) differs significantly (P 0.05) from the influence of Gmelina and Gliricidia plantations. Our study further revealed that influence of tree plantation on physical properties showed significant difference (P 0.05). Tree plantation and biodiversity conservation ensure sustainable management of natural forest resources. Participation of NGOs and private individuals in plantation development could also be enhanced through the organized taungya farming system and other forms of tree planting like agroforestry system for improved soil conservation and restoration of degraded lands.

Suggested Citation

  • Henry Obiahu Otai & Daniel Aja & Chukwuebuka Christopher Okolo & Chizoba Obianuju Oranu, 2018. "Influence Of Tree Plantation Gmelina Arborea And Gliricidia Sepium On Soil Physico-Chemical Properties In Abakaliki, Southeast, Nigeria," Acta Chemica Malaysia (ACMY), Zibeline International Publishing, vol. 2(2), pages 23-28, August.
  • Handle: RePEc:zib:zbacmy:v:2:y:2018:i:2:p:23-28
    DOI: 10.26480/acmy.02.2018.23.28
    as

    Download full text from publisher

    File URL: https://www.actachemicamalaysia.com/download/5316/
    Download Restriction: no

    File URL: https://libkey.io/10.26480/acmy.02.2018.23.28?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Johannes Lehmann & Markus Kleber, 2015. "The contentious nature of soil organic matter," Nature, Nature, vol. 528(7580), pages 60-68, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ota Henry Obiahu & Agama Idika Kalu & Nnachi Uchechukwu, 2020. "Effect Of Tectona Grandis Biochar On Soil Quality Enhancement And Yield Of Cucumber (Cucumis Sativus L) In Highly-Weathered Nitisol, Southeastern Nigeria," Journal of Wastes and Biomass Management (JWBM), Zibeline International Publishing, vol. 2(2), pages 41-48, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elena A. Mikhailova & Garth R. Groshans & Christopher J. Post & Mark A. Schlautman & Gregory C. Post, 2019. "Valuation of Soil Organic Carbon Stocks in the Contiguous United States Based on the Avoided Social Cost of Carbon Emissions," Resources, MDPI, vol. 8(3), pages 1-15, August.
    2. Rolinski, Susanne & Prishchepov, Alexander V. & Guggenberger, Georg & Bischoff, Norbert & Kurganova, Irina & Schierhorn, Florian & Müller, Daniel & Müller, Christoph, 2021. "Dynamics of soil organic carbon in the steppes of Russia and Kazakhstan under past and future climate and land use," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 21(3).
    3. Berazneva, Julia & McBride, Linden & Sheahan, Megan & Güereña, David, 2018. "Empirical assessment of subjective and objective soil fertility metrics in east Africa: Implications for researchers and policy makers," World Development, Elsevier, vol. 105(C), pages 367-382.
    4. Héctor Iván Bedolla-Rivera & María de la Luz Xochilt Negrete-Rodríguez & Miriam del Rocío Medina-Herrera & Francisco Paúl Gámez-Vázquez & Dioselina Álvarez-Bernal & Midory Samaniego-Hernández & Alfred, 2020. "Development of a Soil Quality Index for Soils under Different Agricultural Management Conditions in the Central Lowlands of Mexico: Physicochemical, Biological and Ecophysiological Indicators," Sustainability, MDPI, vol. 12(22), pages 1-24, November.
    5. Jakub Bekier & Elżbieta Jamroz & Karolina Walenczak-Bekier & Martyna Uściła, 2023. "Soil Organic Matter Composition in Urban Soils: A Study of Wrocław Agglomeration, SW Poland," Sustainability, MDPI, vol. 15(3), pages 1-12, January.
    6. Carine Naba & Hiroshi Ishidaira & Jun Magome & Kazuyoshi Souma, 2024. "Exploring the Potential of Soil and Water Conservation Measures for Climate Resilience in Burkina Faso," Sustainability, MDPI, vol. 16(18), pages 1-20, September.
    7. Liudmila Tripolskaja & Asta Kazlauskaite-Jadzevice & Eugenija Baksiene & Almantas Razukas, 2022. "Changes in Organic Carbon in Mineral Topsoil of a Formerly Cultivated Arenosol under Different Land Uses in Lithuania," Agriculture, MDPI, vol. 12(4), pages 1-19, March.
    8. José Manuel Rato Nunes & António Bonito & Luis Loures & José Gama & Antonio López-Piñeiro & David Peña & Ángel Albarrán, 2017. "Effects of the European Union Agricultural and Environmental Policies in the Sustainability of Most Common Mediterranean Soils," Sustainability, MDPI, vol. 9(8), pages 1-16, August.
    9. Jianghua Tang & Lili Su & Yanfei Fang & Chen Wang & Linyi Meng & Jiayong Wang & Junyao Zhang & Wenxiu Xu, 2023. "Moderate Nitrogen Reduction Increases Nitrogen Use Efficiency and Positively Affects Microbial Communities in Agricultural Soils," Agriculture, MDPI, vol. 13(4), pages 1-24, March.
    10. Guillermo Martínez Pastur & Marie-Claire Aravena Acuña & Jimena E. Chaves & Juan M. Cellini & Eduarda M. O. Silveira & Julián Rodriguez-Souilla & Axel von Müller & Ludmila La Manna & María V. Lencinas, 2023. "Nitrogenous and Phosphorus Soil Contents in Tierra del Fuego Forests: Relationships with Soil Organic Carbon, Climate, Vegetation and Landscape Metrics," Land, MDPI, vol. 12(5), pages 1-18, April.
    11. He, Qinsi & Liu, De Li & Wang, Bin & Li, Linchao & Cowie, Annette & Simmons, Aaron & Zhou, Hongxu & Tian, Qi & Li, Sien & Li, Yi & Liu, Ke & Yan, Haoliang & Harrison, Matthew Tom & Feng, Puyu & Waters, 2022. "Identifying effective agricultural management practices for climate change adaptation and mitigation: A win-win strategy in South-Eastern Australia," Agricultural Systems, Elsevier, vol. 203(C).
    12. Steffen Schlüter & Frederic Leuther & Lukas Albrecht & Carmen Hoeschen & Rüdiger Kilian & Ronny Surey & Robert Mikutta & Klaus Kaiser & Carsten W. Mueller & Hans-Jörg Vogel, 2022. "Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Yue Zhang & Guihua Liu & Zhixing Ma & Xin Deng & Jiahao Song & Dingde Xu, 2022. "The Influence of Land Attachment on Land Abandonment from the Perspective of Generational Difference: Evidence from Sichuan Province, China," IJERPH, MDPI, vol. 19(18), pages 1-15, September.
    14. Miriam Githongo & Lucy Ngatia & Milka Kiboi & Anne Muriuki & Andreas Fliessbach & Collins Musafiri & Riqiang Fu & Felix Ngetich, 2023. "The Structural Quality of Soil Organic Matter under Selected Soil Fertility Management Practices in the Central Highlands of Kenya," Sustainability, MDPI, vol. 15(8), pages 1-13, April.
    15. Ludovic Henneron & Jerôme Balesdent & Gaël Alvarez & Pierre Barré & François Baudin & Isabelle Basile-Doelsch & Lauric Cécillon & Alejandro Fernandez-Martinez & Christine Hatté & Sébastien Fontaine, 2022. "Bioenergetic control of soil carbon dynamics across depth," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Shuai Wang & Nan Wang & Junping Xu & Xi Zhang & Sen Dou, 2019. "Contribution of Microbial Residues Obtained from Lignin and Cellulose on Humus Formation," Sustainability, MDPI, vol. 11(17), pages 1-12, September.
    17. Duyen Minh Pham & Arata Katayama, 2018. "Humin as an External Electron Mediator for Microbial Pentachlorophenol Dechlorination: Exploration of Redox Active Structures Influenced by Isolation Methods," IJERPH, MDPI, vol. 15(12), pages 1-17, December.
    18. Lenka Pavlů & Jiří Balík & Simona Procházková & Petra Vokurková & Ivana Galušková & Ondřej Sedlář, 2023. "Soil organic matter quality of variously managed agricultural soil in the Czech Republic evaluated using DRIFT spectroscopy," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 18(4), pages 281-291.
    19. Kristin Piikki & Mats Söderström & Rolf Sommer & Mayesse Da Silva & Sussy Munialo & Wuletawu Abera, 2019. "A Boundary Plane Approach to Map Hotspots for Achievable Soil Carbon Sequestration and Soil Fertility Improvement," Sustainability, MDPI, vol. 11(15), pages 1-17, July.
    20. Subash Dahal & Dorcas H. Franklin & Anish Subedi & Miguel L. Cabrera & Laura Ney & Brendan Fatzinger & Kishan Mahmud, 2021. "Interrelationships of Chemical, Physical and Biological Soil Health Indicators in Beef-Pastures of Southern Piedmont, Georgia," Sustainability, MDPI, vol. 13(9), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zbacmy:v:2:y:2018:i:2:p:23-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing (email available below). General contact details of provider: https://www.actachemicamalaysia.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.