IDEAS home Printed from https://ideas.repec.org/a/zbw/wistat/294180.html
   My bibliography  Save this article

Schätzung regionaler Einkommensindikatoren unter Transformationen in Abwesenheit von Populations-Mikrodaten

Author

Listed:
  • Würz, Nora

Abstract

Für Deutschland und andere entwickelte Länder werden Methoden zur Schätzung von sozioökonomischen Indikatoren auf räumlich disaggregierter Ebene benötigt, ohne dabei Populations-Mikrodaten zu verwenden, die meist nicht öffentlich verfügbar sind. Viele sozioökonomische Indikatoren, zum Beispiel Einkommen, sind schief verteilt, weswegen zur Erfüllung der Annahmen der Modelle (datengetriebene) Transformationen der abhängigen Variablen verwendet werden. Hierfür werden Verzerrungs-Korrekturen für die Small-Area-Vorhersagen benötigt. Die vorgestellte Methodik zur Verzerrungs-Korrektur basiert auf einer Kerndichte-Schätzung. Sie wird auf Daten des Sozio-oekonomischen Panels 2011 angewendet, um das durchschnittliche Bruttoeinkommen für 96 deutsche Raumordnungsregionen zu schätzen

Suggested Citation

  • Würz, Nora, 2024. "Schätzung regionaler Einkommensindikatoren unter Transformationen in Abwesenheit von Populations-Mikrodaten," WISTA – Wirtschaft und Statistik, Statistisches Bundesamt (Destatis), Wiesbaden, vol. 76(2), pages 107-116.
  • Handle: RePEc:zbw:wistat:294180
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/294180/1/1887988793.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Natalia Rojas‐Perilla & Sören Pannier & Timo Schmid & Nikos Tzavidis, 2020. "Data‐driven transformations in small area estimation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 121-148, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guadarrama, María & Morales, Domingo & Molina, Isabel, 2021. "Time stable empirical best predictors under a unit-level model," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    2. Isabel Molina & Paul Corral & Minh Nguyen, 2022. "Estimation of poverty and inequality in small areas: review and discussion," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1143-1166, December.
    3. Paul Walter & Marcus Groß & Timo Schmid & Nikos Tzavidis, 2021. "Domain prediction with grouped income data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1501-1523, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:wistat:294180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/stagvde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.