Author
Listed:
- Pavlik, Martin
- Michalski, Grzegorz
Abstract
Forecast risk management is central to the financial management process. This study aims to apply Monte Carlo simulation to solve three classic probabilistic paradoxes and discuss their implementation in corporate financial management. The article presents Monte Carlo simulation as an advanced tool for risk management in financial management processes. This method allows for a comprehensive risk analysis of financial forecasts, making it possible to assess potential errors in cash flow forecasts and predict the value of corporate treasury growth under various future scenarios. In the investment decision-making process, Monte Carlo simulation supports the evaluation of the effectiveness of financial projects by calculating the expected net value and identifying the risks associated with investments, allowing more informed decisions to be made in project implementation. The method is used in reducing cash flow volatility, which contributes to lowering the cost of capital and increasing the value of a company. Simulation also enables more accurate liquidity planning, including forecasting cash availability and determining appropriate financial reserves based on probability distributions. Monte Carlo also supports the management of credit and interest rate risk, enabling the simulation of the impact of various economic scenarios on a company’s financial obligations. In the context of strategic planning, the method is an extension of decision tree analysis, where subsequent decisions are made based on the results of earlier ones. Creating probabilistic models based on Monte Carlo simulations makes it possible to take into account random variables and their impact on key financial management indicators, such as free cash flow (FCF). Compared to traditional methods, Monte Carlo simulation offers a more detailed and precise approach to risk analysis and decision-making, providing companies with vital information for financial management under uncertainty. This article emphasizes that the use of Monte Carlo simulation in financial management not only enhances the effectiveness of risk management, but also supports the long-term growth of corporate value. The entire process of financial management is able to move into the future based on predicting future free cash flows discounted at the cost of capital. We used both numerical and analytical methods to solve veridical paradoxes. Veridical paradoxes are a type of paradox in which the result of the analysis is counterintuitive, but turns out to be true after careful examination. This means that although the initial reasoning may lead to a wrong conclusion, a correct mathematical or logical analysis confirms the correctness of the results. An example is Monty Hall’s problem, where the intuitive answer suggests an equal probability of success, while probabilistic analysis shows that changing the decision increases the chances of winning. We used Monte Carlo simulation as the numerical method. The following analytical methods were used: conditional probability, Bayes’ rule and Bayes’ rule with multiple conditions. We solved truth-type paradoxes and discovered why the Monty Hall problem was so widely discussed in the 1990s. We differentiated Monty Hall problems using different numbers of doors and prizes.
Suggested Citation
Pavlik, Martin & Michalski, Grzegorz, 2025.
"Monte Carlo Simulations for Resolving Verifiability Paradoxes in Forecast Risk Management and Corporate Treasury Applications,"
EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 13(2), pages 1-38.
Handle:
RePEc:zbw:espost:315279
DOI: 10.3390/ijfs13020049
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:espost:315279. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zbwkide.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.