IDEAS home Printed from https://ideas.repec.org/a/wut/journl/v31y2021i4p35-52id1651.html
   My bibliography  Save this article

Sensitivity analysis of grey linear programming for optimization problems

Author

Listed:
  • Davood Darvishi
  • Farid Pourofoghi
  • Jeffrey Yi-Lin Forrest

Abstract

Sensitivity analysis of parameters is usually more important than the optimal solution when it comes to linear programming. Nevertheless, in the analysis of traditional sensitivities for a coefficient, a range of changes is found to maintain the optimal solution. These changes can be functional constraints in the coefficients, such as good values or technical coefficients, of the objective function. When real-world problems are highly inaccurate due to limited data and limited information, the method of grey systems is used to perform the needed optimisation. Several algorithms for solving grey linear programming have been developed to entertain involved inaccuracies in the model parameters; these methods are complex and require much computational time. In this paper, the sensitivity of a series of grey linear programming problems is analysed by using the definitions and operators of grey numbers. Also, uncertainties in parameters are preserved in the solutions obtained from the sensitivity analysis. To evaluate the efficiency and importance of the developed method, an applied numerical example is solved.

Suggested Citation

  • Davood Darvishi & Farid Pourofoghi & Jeffrey Yi-Lin Forrest, 2021. "Sensitivity analysis of grey linear programming for optimization problems," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(4), pages 35-52.
  • Handle: RePEc:wut:journl:v:31:y:2021:i:4:p:35-52:id:1651
    DOI: 10.37190/ord210402
    as

    Download full text from publisher

    File URL: https://ord.pwr.edu.pl/assets/papers_archive/1651%20-%20published.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.37190/ord210402?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Abhijit Baidya & Uttam Kumar Bera & Manoranjan Maiti, 2016. "The grey linear programming approach and its application to multi-objective multi-stage solid transportation problem," OPSEARCH, Springer;Operational Research Society of India, vol. 53(3), pages 500-522, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pravash Kumar Giri & Manas Kumar Maiti & Manoranjan Maiti, 2023. "Profit maximization fuzzy 4D-TP with budget constraint for breakable substitute items: a swarm based optimization approach," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 571-615, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wut:journl:v:31:y:2021:i:4:p:35-52:id:1651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam Kasperski (email available below). General contact details of provider: https://edirc.repec.org/data/iopwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.