IDEAS home Printed from https://ideas.repec.org/a/wut/journl/v1y2014p5-21id1066.html
   My bibliography  Save this article

Solving linear fractional multi-level programs

Author

Listed:
  • Shifali Bhargava

Abstract

The linear fractional multilevel programming (LFMP) problem has been studied and it has been proved that an optimal solution to this problem occurs at a boundary feasible extreme point. Hence the Kth-best algorithm can be proposed to solve the problem. This property can be applied to quasiconcave multilevel problems provided that the first (n – 1) level objective functions are explicitly quasimonotonic, otherwise it cannot be proved that there exists a boundary feasible extreme point that solves the LFMP problem.

Suggested Citation

  • Shifali Bhargava, 2014. "Solving linear fractional multi-level programs," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 24(1), pages 5-21.
  • Handle: RePEc:wut:journl:v:1:y:2014:p:5-21:id:1066
    DOI: 10.5277/ord140101
    as

    Download full text from publisher

    File URL: https://ord.pwr.edu.pl/assets/papers_archive/1066%20-%20published.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.5277/ord140101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mishra, Savita, 2007. "Weighting method for bi-level linear fractional programming problems," European Journal of Operational Research, Elsevier, vol. 183(1), pages 296-302, November.
    2. Liu, Yi-Hsin & Hart, Stephen M., 1994. "Characterizing an optimal solution to the linear bilevel programming problem," European Journal of Operational Research, Elsevier, vol. 73(1), pages 164-166, February.
    3. H. I. Calvete & C. Galé, 1998. "On the Quasiconcave Bilevel Programming Problem," Journal of Optimization Theory and Applications, Springer, vol. 98(3), pages 613-622, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ritu Arora & Kavita Gupta, 2018. "Branch and bound algorithm for discrete multi- level linear fractional programming problem," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 28(2), pages 5-21.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tunjo Perić & Josip Matejaš & Zoran Babić, 2023. "Advantages, sensitivity and application efficiency of the new iterative method to solve multi-objective linear fractional programming problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 751-767, September.
    2. Kang, Chao-Chung & Feng, Cheng-Min & Kuo, Chiu-Yen, 2012. "Comparison of royalty methods for build–operate–transfer projects from a negotiation perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(4), pages 830-842.
    3. Kuo, R.J. & Lee, Y.H. & Zulvia, Ferani E. & Tien, F.C., 2015. "Solving bi-level linear programming problem through hybrid of immune genetic algorithm and particle swarm optimization algorithm," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 1013-1026.
    4. Hecheng Li, 2015. "A genetic algorithm using a finite search space for solving nonlinear/linear fractional bilevel programming problems," Annals of Operations Research, Springer, vol. 235(1), pages 543-558, December.
    5. Charles, V. & Udhayakumar, A. & Rhymend Uthariaraj, V., 2010. "An approach to find redundant objective function(s) and redundant constraint(s) in multi-objective nonlinear stochastic fractional programming problems," European Journal of Operational Research, Elsevier, vol. 201(2), pages 390-398, March.
    6. Josip Matejaš & Tunjo Perić & Danijel Mlinarić, 2021. "Which efficient solution in multi objective programming problem should be taken?," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(3), pages 967-987, September.
    7. Herminia Calvete & Carmen Galé & Pedro Mateo, 2009. "A genetic algorithm for solving linear fractional bilevel problems," Annals of Operations Research, Springer, vol. 166(1), pages 39-56, February.
    8. Cao, D. & Leung, L. C., 2002. "A partial cooperation model for non-unique linear two-level decision problems," European Journal of Operational Research, Elsevier, vol. 140(1), pages 134-141, July.
    9. Jean Etoa, 2010. "Solving convex quadratic bilevel programming problems using an enumeration sequential quadratic programming algorithm," Journal of Global Optimization, Springer, vol. 47(4), pages 615-637, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wut:journl:v:1:y:2014:p:5-21:id:1066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam Kasperski (email available below). General contact details of provider: https://edirc.repec.org/data/iopwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.