Author
Listed:
- BAIDEHISH SAHOO
(School of Mechanical Engineering, Maharashtra Institute of Technology-World Peace University, Pune, Maharashtra 411038, India)
- TANMOY DAS
(��Department of Mechanical Engineering, Galgotias University, Uttar Pradesh 203201, India)
- JINU PAUL
(��Department of Mechanical Engineering, National Institute of Technology Calicut, Calicut 673601, India)
Abstract
This paper explains about the mechanical insertion of graphite particles into aluminum (Al-1100) surface for forming composites on the surface through an electrical resistance heat-supported pressing procedure. The surface of the aluminum is first graphite coated by solution casting. To achieve impregnation, the graphite–aluminum interface is locally heated with the assistance of electrical resistance heating followed by mechanical pushing. The degree to which aluminum surface softens can be regulated by process factors like current and heating time. Microstructural characterization of aluminum–graphite composite was carried out with SEM, TEM, Raman spectroscopy and XRD. It was revealed from the microstructural characterization that graphite particles were impregnated into the aluminum surface without agglomeration. Raman spectroscopy of graphite-impregnated surface shows a shift in major graphite peaks and an increased ratio of intensity (ID/IG). The presence of carbide compound (Al4C3) was not detected from the XRD and TEM studies. The mechanical property examination of the surface was carried out by nanoindentation and the subsurface was characterized by microhardness tests. It was observed that surface mechanical property and reduced Young’s modulus were improved by more than 200% and 150%, respectively. The projected method can be utilized as a surface modification technique in solid-state by fabricating surface composites fabricated through mechanical insertion of particulate reinforcement at sub-melting temperatures of substrate and under an open producing environment.
Suggested Citation
Baidehish Sahoo & Tanmoy Das & Jinu Paul, 2024.
"Investigation Of Microstructural Evolution And Mechanical Properties Of Surface Graphitized Al-1100 Alloy,"
Surface Review and Letters (SRL), World Scientific Publishing Co. Pte. Ltd., vol. 31(11), pages 1-17, November.
Handle:
RePEc:wsi:srlxxx:v:31:y:2024:i:11:n:s0218625x24500896
DOI: 10.1142/S0218625X24500896
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:srlxxx:v:31:y:2024:i:11:n:s0218625x24500896. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/srl/srl.shtml .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.