Author
Listed:
- M. NALLUSAMY
(Department of Mechanical Engineering, Dr. N. G. P. Institute of Technology, Coimbatore-641048, Tamil Nadu, India)
- K. KIRAN
(Department of Mechanical Engineering, Dr. N. G. P. Institute of Technology, Coimbatore-641048, Tamil Nadu, India)
- M. SURIYAPRAKASH
(Department of Mechanical Engineering, Dr. N. G. P. Institute of Technology, Coimbatore-641048, Tamil Nadu, India)
Abstract
Many researchers have attempted to join Aluminum Matrix Composites (AMCs) using traditional fusion welding processes resulting in the formation of porosity, segregation, coarse microstructure, brittle intermetallic compounds and corrosion of ceramic particles. Friction Stir Processing (FSP) is the latest solid-state technique to achieve the homogeneous dispersion of reinforcement particles in the friction stir processed zone of AMCs [M. Shamanian, E. Bahrami, H. Edris and M. R. Nasresfahani, Surf. Rev. Lett. 25 (2018) 1950010]. The most widely used reinforcing material since the inception of FSP is inorganic (metallic) powders such as silicon carbide, titanium alloy, graphene, iron, stainless steel, nitrides and oxides, and fewer works have been reported on organic powders (i.e. bioprocessing using agro-waste powders) such as fly ash, palm kernel shell ash, coconut shell ash and rice husk ash [O. M. Ikumapayi, E. T. Akinlabi, S. K. Pal and J. D. Majumdar, Procedia Manuf. 35 (2019) 935]. In this work, the effect of FSP on the changes in metallurgical characterization and mechanical properties of AA7075/(3, 6 and 9) vol.% ZrB2 in situ AMCs was observed. After performing FSP, the AMCs were characterized using Scanning Electron Microscope and the mechanical properties such as Ultimate Tensile Strength and microhardness on the processed zone of the AMCs were calculated. The effect of FSP on AA7075/ (3, 6 and 9) vol.% ZrB2 in situ AMCs was investigated. The fracture morphologies on the processed surface of the AMCs were evaluated.
Suggested Citation
M. Nallusamy & K. Kiran & M. Suriyaprakash, 2022.
"EVALUATION OF METALLURGICAL CHARACTERIZATION AND MECHANICAL PROPERTIES OF AA7075/ZrB2 IN SITU AMCs AFTER FRICTION STIR PROCESSING,"
Surface Review and Letters (SRL), World Scientific Publishing Co. Pte. Ltd., vol. 29(05), pages 1-10, May.
Handle:
RePEc:wsi:srlxxx:v:29:y:2022:i:05:n:s0218625x22500640
DOI: 10.1142/S0218625X22500640
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:srlxxx:v:29:y:2022:i:05:n:s0218625x22500640. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/srl/srl.shtml .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.