IDEAS home Printed from https://ideas.repec.org/a/wsi/nmncxx/v07y2011i02ns1793005711001949.html
   My bibliography  Save this article

An Integrated Model Using Wavelet Decomposition And Least Squares Support Vector Machines For Monthly Crude Oil Prices Forecasting

Author

Listed:
  • YEJING BAO

    (Department of Economics and Management, College of Pilot, Beijing University of Technology, Beijing 101101, China;
    Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China)

  • XUN ZHANG

    (Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China)

  • LEAN YU

    (Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China)

  • KIN KEUNG LAI

    (Department of Management Sciences, City University of Hong Kong, Kowloon, Hong Kong)

  • SHOUYANG WANG

    (Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China)

Abstract

In this paper, a hybrid model integrating wavelet decomposition and least squares support machines (LSSVM) is proposed for crude oil price forecasting. In this model, the Haar à trous wavelet transform is first selected to decompose an original time series into several sub-series with different scales. Then the LSSVM is used to predict each sub-series. Subsequently, the final oil price forecast is obtained by reconstructing the results of the sub-series forecasts. The experimental results show that the integrated model, based on multi-scale wavelet decomposition, outperforms the traditional single-scale models. Furthermore, the proposed hybrid model is the best among all the models compared in this study. To fully integrate the advantages of several models, a combined forecasting model is presented. The study shows that the combined forecasting model is clearly better than any individual model for crude oil price forecasting.

Suggested Citation

  • Yejing Bao & Xun Zhang & Lean Yu & Kin Keung Lai & Shouyang Wang, 2011. "An Integrated Model Using Wavelet Decomposition And Least Squares Support Vector Machines For Monthly Crude Oil Prices Forecasting," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 299-311.
  • Handle: RePEc:wsi:nmncxx:v:07:y:2011:i:02:n:s1793005711001949
    DOI: 10.1142/S1793005711001949
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S1793005711001949
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S1793005711001949?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdollahi, Hooman & Ebrahimi, Seyed Babak, 2020. "A new hybrid model for forecasting Brent crude oil price," Energy, Elsevier, vol. 200(C).
    2. Jiang Wu & Feng Miu & Taiyong Li, 2020. "Daily Crude Oil Price Forecasting Based on Improved CEEMDAN, SCA, and RVFL: A Case Study in WTI Oil Market," Energies, MDPI, vol. 13(7), pages 1-20, April.
    3. Karasu, Seçkin & Altan, Aytaç & Bekiros, Stelios & Ahmad, Wasim, 2020. "A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series," Energy, Elsevier, vol. 212(C).
    4. Safari, Ali & Davallou, Maryam, 2018. "Oil price forecasting using a hybrid model," Energy, Elsevier, vol. 148(C), pages 49-58.
    5. Chai, Jian & Xing, Li-Min & Zhou, Xiao-Yang & Zhang, Zhe George & Li, Jie-Xun, 2018. "Forecasting the WTI crude oil price by a hybrid-refined method," Energy Economics, Elsevier, vol. 71(C), pages 114-127.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:nmncxx:v:07:y:2011:i:02:n:s1793005711001949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/nmnc/nmnc.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.