Author
Listed:
- Anurag Gupta
(Amity Institute of Information Technology, Amity University, Noida, Uttar Pradesh, India)
- Mayank Sharma
(Amity Institute of Information Technology, Amity University, Noida, Uttar Pradesh, India)
- Amit Srivastava
(Department of Mathematics, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India)
Abstract
Software bug prediction is mainly used for testing and code inspection. So, software bug prediction is carried out by network measures over the decades. But, the classical fault prediction method failed to obtain the semantic difference among various programs. Thus, it degrades the working of the prediction model, which is designed using these aspects. It is necessary to obtain the semantic difference for designing the prediction model accurately and effectively. In a software defect prediction system, it faces many difficulties in identifying the defect modules like correlation, irrelevance aspects, data redundancy, and missing samples or values. Consequently, many researchers are designed to detect software bug prediction that categorises faulty as well as non-faulty modules with software matrices. But, there are only a few works focussed to mitigate the class imbalance problem in bug prediction. In order to overcome the problem, it is required to develop an efficient software bug prediction method with the enhanced classifier. For this experimentation, the input data are taken from the standard online data sources. Initially, the input data undergo pre-processing phase and then, the pre-processed data are provided as input to the feature extraction by utilising the Auto-Encoder. These obtained features are utilised in getting the optimal fused features with the help of a new Hybrid Honey Badger Cat Swarm Algorithm (HHBCSA). Finally, these features are fed as input to the Optimised Parallel Cascaded Deep Network (OPCDP), where the “Extreme Learning Machine (ELM) and Deep Belief Network (DBN)†are used for the prediction of software bugs, in which the parameters from both classifiers are optimised by proposed HHBCSA algorithm. From the investigations, the recommended software bug prediction method offers a quicker bug prediction result, which helps to detect and remove the software bug easily and accurately.
Suggested Citation
Anurag Gupta & Mayank Sharma & Amit Srivastava, 2024.
"Development of Honey Badger-Cat Swarm Optimisation-Based Parallel Cascaded Deep Network for Software Bug Prediction Framework,"
Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 23(03), pages 1-35, June.
Handle:
RePEc:wsi:jikmxx:v:23:y:2024:i:03:n:s0219649224500047
DOI: 10.1142/S0219649224500047
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:jikmxx:v:23:y:2024:i:03:n:s0219649224500047. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/jikm/jikm.shtml .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.