Author
Listed:
- Mostafa Jafari
(Department of Industrial Engineering, Iran University of Science & Technology, Tehran, Iran)
- Mohammadreza Zahedi
(��Department of Industrial Engineering, Malek Ashtar University of Technology, Tehran, Iran)
- Shayan Naghdi Khanachah
(Department of Industrial Engineering, Iran University of Science & Technology, Tehran, Iran)
Abstract
In the knowledge economy, knowledge-based organisations, in particular, open a special account for their employees. Knowledge acquisition is important for organisations, because it enables them to improve their skills and creates value, credibility and competitive advantage. This research has been made to identify the motivational factors effective for knowledge acquisition and prioritise these factors, as well as providing a framework for managers to enable knowledge sharing from knowledge workers and increase their desire to overcome current problems. The organisation has been paid. The statistical population of the research is 300 managers and experts in the automotive industry, and in this research, the opinions of 20 experts have been used to analyse the results. The results were analysed using the fuzzy technique to answer the research questions. The calculations obtained by applying the proposed method show that among the six factors affecting knowledge acquisition, Behavioural factors, with a weight of 0.296, have the most impact on knowledge acquisition compared to other factors. After that, the factor of Information Technology in the organisation, with a weight of 0.17, is in second place concerning the level of influence on knowledge acquisition. Also, the Organisational Learning Criteria are ranked third with a weight of 0.165. And the factors of Organisational Culture, Reward and Structure are placed in the next priorities with weights of 0.153, 0.094 and 0.121, respectively.
Suggested Citation
Mostafa Jafari & Mohammadreza Zahedi & Shayan Naghdi Khanachah, 2024.
"Presenting an Effective Motivational Model on the Knowledge Acquisition Process Using Fuzzy Best-Worst Method (FBWM),"
Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 23(01), pages 1-18, February.
Handle:
RePEc:wsi:jikmxx:v:23:y:2024:i:01:n:s0219649223500612
DOI: 10.1142/S0219649223500612
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:jikmxx:v:23:y:2024:i:01:n:s0219649223500612. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/jikm/jikm.shtml .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.