IDEAS home Printed from https://ideas.repec.org/a/wsi/jikmxx/v16y2017i04ns0219649217500344.html
   My bibliography  Save this article

Phishing Detection: A Case Analysis on Classifiers with Rules Using Machine Learning

Author

Listed:
  • Fadi Thabtah

    (Nelson Marlborough Institute of Technology, Auckland, New Zealand)

  • Firuz Kamalov

    (Canadian University of Dubai, Dubai, UAE)

Abstract

A typical predictive approach in data mining that produces If-Then knowledge for decision making is rule-based classification. Rule-based classification includes a large number of algorithms that fall under the categories of covering, greedy, rule induction, and associative classification. These approaches have shown promising results due to the simplicity of the models generated and the user’s ability to understand, and maintain them. Phishing is one of the emergent online threats in web security domains that necessitates anti-phishing models with rules so users can easily differentiate among website types. This paper critically analyses recent research studies on the use of predictive models with rules for phishing detection, and evaluates the applicability of these approaches on phishing. To accomplish our task, we experimentally evaluate four different rule-based classifiers that belong to greedy, associative classification and rule induction approaches on real phishing datasets and with respect to different evaluation measures. Moreover, we assess the classifiers derived and contrast them with known classic classification algorithms including Bayes Net and Simple Logistics. The aim of the comparison is to determine the pros and cons of predictive models with rules and reveal their actual performance when it comes to detecting phishing activities. The results clearly showed that eDRI, a recently greedy algorithm, not only generates useful models but these are also highly competitive with respect to predictive accuracy as well as runtime when they are employed as anti-phishing tools.

Suggested Citation

  • Fadi Thabtah & Firuz Kamalov, 2017. "Phishing Detection: A Case Analysis on Classifiers with Rules Using Machine Learning," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1-16, December.
  • Handle: RePEc:wsi:jikmxx:v:16:y:2017:i:04:n:s0219649217500344
    DOI: 10.1142/S0219649217500344
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219649217500344
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219649217500344?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fadi Thabtah & Omar Gharaibeh & Rashid Al-Zubaidy, 2012. "Arabic Text Mining Using Rule Based Classification," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 1-10.
    2. Neda Abdelhamid & Fadi Thabtah, 2014. "Associative Classification Approaches: Review and Comparison," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 13(03), pages 1-30.
    3. Fadi Thabtah & Neda Abdelhamid, 2016. "Deriving Correlated Sets of Website Features for Phishing Detection: A Computational Intelligence Approach," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Firuz Kamalov & Ho Hon Leung & Sherif Moussa, 2022. "Monotonicity of the $$\chi ^2$$ χ 2 -statistic and Feature Selection," Annals of Data Science, Springer, vol. 9(6), pages 1223-1241, December.
    2. Majed Rajab, 2019. "Visualisation Model Based on Phishing Features," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 1-17, March.
    3. Firuz Kamalov & Fadi Thabtah & Ho Hon Leung, 2023. "Feature Selection in Imbalanced Data," Annals of Data Science, Springer, vol. 10(6), pages 1527-1541, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Firuz Kamalov & Fadi Thabtah, 2017. "A Feature Selection Method Based on Ranked Vector Scores of Features for Classification," Annals of Data Science, Springer, vol. 4(4), pages 483-502, December.
    2. Majed Rajab, 2019. "Visualisation Model Based on Phishing Features," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 1-17, March.
    3. Chanchala Hathurusingha & Neda Abdelhamid & David Airehrour, 2019. "Forecasting Models Based on Data Analytics for Predicting Rice Price Volatility: A Case Study of the Sri Lankan Rice Market," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 1-20, March.
    4. Anthony Gramaje & Fadi Thabtah & Neda Abdelhamid & Sayan Kumar Ray, 2021. "Patient Discharge Classification Using Machine Learning Techniques," Annals of Data Science, Springer, vol. 8(4), pages 755-767, December.
    5. Said Baadel & Joan Lu, 2019. "Data Analytics: Intelligent Anti-Phishing Techniques Based on Machine Learning," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 1-17, March.
    6. Fadi Thabtah & Li Zhang & Neda Abdelhamid, 2019. "NBA Game Result Prediction Using Feature Analysis and Machine Learning," Annals of Data Science, Springer, vol. 6(1), pages 103-116, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:jikmxx:v:16:y:2017:i:04:n:s0219649217500344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/jikm/jikm.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.