IDEAS home Printed from https://ideas.repec.org/a/wsi/jikmxx/v05y2006i01ns0219649206001281.html
   My bibliography  Save this article

Rule Preference Effect in Associative Classification Mining

Author

Listed:
  • Fadi Thabtah

    (Department of Computing and Engineering, University of Huddersfield, Huddersfield, UK)

Abstract

Classification based on association rule mining, also known as associative classification, is a promising approach in data mining that builds accurate classifiers. In this paper, a rule ranking process within the associative classification approach is investigated. Specifically, two common rule ranking methods in associative classification are compared with reference to their impact on accuracy. We also propose a new rule ranking procedure that adds more tie breaking conditions to the existing methods in order to reduce rule random selection. In particular, our method looks at the class distribution frequency associated with the tied rules and favours those that are associated with the majority class. We compare the impact of the proposed rule ranking method and two other methods presented in associative classification against 14 highly dense classification data sets. Our results indicate the effectiveness of the proposed rule ranking method on the quality of the resulting classifiers for the majority of the benchmark problems, which we consider. This provides evidence that adding more appropriate constraints to break ties between rules positively affects the predictive power of the resulting associative classifiers.

Suggested Citation

  • Fadi Thabtah, 2006. "Rule Preference Effect in Associative Classification Mining," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 13-20.
  • Handle: RePEc:wsi:jikmxx:v:05:y:2006:i:01:n:s0219649206001281
    DOI: 10.1142/S0219649206001281
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219649206001281
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219649206001281?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Majed Rajab, 2019. "Visualisation Model Based on Phishing Features," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 1-17, March.
    2. Anthony Gramaje & Fadi Thabtah & Neda Abdelhamid & Sayan Kumar Ray, 2021. "Patient Discharge Classification Using Machine Learning Techniques," Annals of Data Science, Springer, vol. 8(4), pages 755-767, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:jikmxx:v:05:y:2006:i:01:n:s0219649206001281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/jikm/jikm.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.