IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v14y2011i06ns0219024911006802.html
   My bibliography  Save this article

Dynamic Portfolio Selection Under Capital-At-Risk With No Short-Selling Constraints

Author

Listed:
  • GORDANA DMITRAŠINOVIĆ-VIDOVIĆ

    (Department of Mathematics and Statistics, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N1N4, Canada)

  • ALI LARI-LAVASSANI

    (, 990 Biscayne Blvd Suite 503, Miami, Florida 33132, USA)

  • XUN LI

    (Department of Applied Mathematics, The Hong Kong Polytechnic University, Stanley Ho Building Hung Hom, Kowloon, Hong Kong)

  • ANTONY WARE

    (Department of Mathematics and Statistics, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N1N4, Canada)

Abstract

Portfolio optimization under downside risk is of crucial importance to asset managers. In this article we consider one such particular measure given by the notion of Capital at Risk (CaR), closely related to Value at Risk. We consider portfolio optimization with respect to CaR in the Black-Scholes setting with time dependent parameters and investment strategies, i.e., continuous-time portfolio optimization. We review the results from our previous work in unconstrained portfolio optimization, and then investigate and solve the corresponding problems with the additional constraint of no-short-selling. Analytical formulae are derived for the optimal strategies, and numerical examples are presented.

Suggested Citation

  • Gordana Dmitrašinović-Vidović & Ali Lari-Lavassani & Xun Li & Antony Ware, 2011. "Dynamic Portfolio Selection Under Capital-At-Risk With No Short-Selling Constraints," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(06), pages 957-977.
  • Handle: RePEc:wsi:ijtafx:v:14:y:2011:i:06:n:s0219024911006802
    DOI: 10.1142/S0219024911006802
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024911006802
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024911006802?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farzad Pourbabaee & Minsuk Kwak & Traian A. Pirvu, 2014. "Risk minimization and portfolio diversification," Papers 1411.6657, arXiv.org, revised Dec 2014.
    2. Farzad Pourbabaee & Minsuk Kwak & Traian A. Pirvu, 2016. "Risk minimization and portfolio diversification," Quantitative Finance, Taylor & Francis Journals, vol. 16(9), pages 1325-1332, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:14:y:2011:i:06:n:s0219024911006802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.