IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v14y2011i01ns0219024911006279.html
   My bibliography  Save this article

Optimal Exercise Of An Executive Stock Option By An Insider

Author

Listed:
  • MICHAEL MONOYIOS

    (Mathematical Institute, University of Oxford, 24–29 St Giles', Oxford, OX1 3LB, UK)

  • ANDREW NG

    (Mathematical Institute, University of Oxford, 24–29 St Giles', Oxford, OX1 3LB, UK)

Abstract

We consider an optimal stopping problem arising in connection with the exercise of an executive stock option by an agent with inside information. The agent is assumed to have noisy information on the terminal value of the stock, does not trade the stock or outside securities, and maximises the expected discounted payoff over all stopping times with regard to an enlarged filtration which includes the inside information. This leads to a stopping problem governed by a time-inhomogeneous diffusion and a call-type reward. We establish conditions under which the option value exhibits time decay, and derive the smooth fit condition for the solution to the free boundary problem governing the maximum expected reward, and derive the early exercise decomposition of the value function. The resulting integral equation for the unknown exercise boundary is solved numerically and this shows that the insider may exercise the option before maturity, in situations when an agent without the privileged information may not. Hence we show that early exercise may arise due to the agent having inside information on the future stock price.

Suggested Citation

  • Michael Monoyios & Andrew Ng, 2011. "Optimal Exercise Of An Executive Stock Option By An Insider," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 83-106.
  • Handle: RePEc:wsi:ijtafx:v:14:y:2011:i:01:n:s0219024911006279
    DOI: 10.1142/S0219024911006279
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024911006279
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024911006279?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vicky Henderson & Kamil Klad'ivko & Michael Monoyios & Christoph Reisinger, 2017. "Executive stock option exercise with full and partial information on a drift change point," Papers 1709.10141, arXiv.org, revised Jul 2020.
    2. Mahan Tahvildari, 2021. "Forward indifference valuation and hedging of basis risk under partial information," Papers 2101.00251, arXiv.org.
    3. Yukihiro Tsuzuki, 2023. "Pitman's Theorem, Black-Scholes Equation, and Derivative Pricing for Fundraisers," Papers 2303.13956, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:14:y:2011:i:01:n:s0219024911006279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.