IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v10y2007i06ns0219024907004494.html
   My bibliography  Save this article

Constant Elasticity Of Variance In Random Time: A New Stochastic Volatility Model With Path Dependence And Leverage Effect

Author

Listed:
  • DMITRY OSTROVSKY

    (RBS Greenwich Capital, 600 Steamboat Road, Greenwich, CT 06830, USA)

Abstract

An arbitrage-free CEV economy driven by Brownian motion in independent, continuous random time is introduced. European options are priced by the no-arbitrage principle as conditional averages of their classical CEV values over the CEV-modified random time to maturity. A novel representation of the classical CEV price is used to investigate the asymptotics of the average implied volatility. It is shown that the average implied volatility of the at-the-money call option is lower and of deep out-of-the-money call options, under appropriate sufficient conditions, greater than the implied CEV volatilities. Unlike in the classical CEV model, the shape of the out-of-the-money tail can be both downward and upward sloping depending on the tails of random time. The model is implemented in limit lognormal time. Its multiscaling law is shown to imply a term structure of implied volatility that is qualitatively more sensitive to changes in the time to maturity than is the classical CEV model.

Suggested Citation

  • Dmitry Ostrovsky, 2007. "Constant Elasticity Of Variance In Random Time: A New Stochastic Volatility Model With Path Dependence And Leverage Effect," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(06), pages 915-937.
  • Handle: RePEc:wsi:ijtafx:v:10:y:2007:i:06:n:s0219024907004494
    DOI: 10.1142/S0219024907004494
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024907004494
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024907004494?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997. "A Multifractal Model of Asset Returns," Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timothy DeLise, 2021. "Neural Options Pricing," Papers 2105.13320, arXiv.org.
    2. Victor Olkhov, 2023. "Market-Based Probability of Stock Returns," Papers 2302.07935, arXiv.org, revised Dec 2024.
    3. Thomas Theobald, 2015. "Agent-based risk management – a regulatory approach to financial markets," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 42(5), pages 780-820, October.
    4. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    5. Paul Eitelman & Justin Vitanza, 2008. "A non-random walk revisited: short- and long-term memory in asset prices," International Finance Discussion Papers 956, Board of Governors of the Federal Reserve System (U.S.).
    6. Mulligan, Robert F., 2004. "Fractal analysis of highly volatile markets: an application to technology equities," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(1), pages 155-179, February.
    7. Kyaw, NyoNyo A. & Los, Cornelis A. & Zong, Sijing, 2006. "Persistence characteristics of Latin American financial markets," Journal of Multinational Financial Management, Elsevier, vol. 16(3), pages 269-290, July.
    8. Selçuk, Faruk & Gençay, Ramazan, 2006. "Intraday dynamics of stock market returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 375-387.
    9. TEYSSIERE, Gilles, 2003. "Interaction models for common long-range dependence in asset price volatilities," LIDAM Discussion Papers CORE 2003026, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Aslam, Faheem & Aziz, Saqib & Nguyen, Duc Khuong & Mughal, Khurrum S. & Khan, Maaz, 2020. "On the efficiency of foreign exchange markets in times of the COVID-19 pandemic," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    11. Lux, Thomas & Morales-Arias, Leonardo & Sattarhoff, Cristina, 2011. "A Markov-switching multifractal approach to forecasting realized volatility," Kiel Working Papers 1737, Kiel Institute for the World Economy (IfW Kiel).
    12. Cornelis A. Los & Rossitsa M. Yalamova, 2004. "Multi-Fractal Spectral Analysis of the 1987 Stock Market Crash," Finance 0409050, University Library of Munich, Germany.
    13. Decrouez, Geoffrey & Hambly, Ben & Jones, Owen Dafydd, 2015. "The Hausdorff spectrum of a class of multifractal processes," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1541-1568.
    14. Calvet, Laurent E. & Fisher, Adlai J., 2008. "Multifrequency jump-diffusions: An equilibrium approach," Journal of Mathematical Economics, Elsevier, vol. 44(2), pages 207-226, January.
    15. Zunino, Luciano & Figliola, Alejandra & Tabak, Benjamin M. & Pérez, Darío G. & Garavaglia, Mario & Rosso, Osvaldo A., 2009. "Multifractal structure in Latin-American market indices," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2331-2340.
    16. Thomas Lux, 2004. "Detecting Multifractal Properties In Asset Returns: The Failure Of The "Scaling Estimator"," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 481-491.
    17. Bikramaditya Ghosh & Spyros Papathanasiou & Dimitrios Kenourgios, 2022. "Cross-Country Linkages and Asymmetries of Sovereign Risk Pluralistic Investigation of CDS Spreads," Sustainability, MDPI, vol. 14(21), pages 1-10, October.
    18. Onali, Enrico & Goddard, John, 2011. "Are European equity markets efficient? New evidence from fractal analysis," International Review of Financial Analysis, Elsevier, vol. 20(2), pages 59-67, April.
    19. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2020. "Multifractal Analysis of Market Efficiency across Structural Breaks: Implications for the Adaptive Market Hypothesis," JRFM, MDPI, vol. 13(10), pages 1-18, October.
    20. Chen, Wang & Wei, Yu & Lang, Qiaoqi & Lin, Yu & Liu, Maojuan, 2014. "Financial market volatility and contagion effect: A copula–multifractal volatility approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 289-300.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:10:y:2007:i:06:n:s0219024907004494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.