IDEAS home Printed from https://ideas.repec.org/a/wsi/ijmpcx/v29y2018i08ns0129183118500717.html
   My bibliography  Save this article

Enhancing LBP by preprocessing via anisotropic diffusion

Author

Listed:
  • Mariane Barros Neiva

    (Institute of Mathematics and Computer Science, University of São Paulo, USP, Avenida, Trabalhador São-Carlense, 400, 13566-590, São Carlos, SP, Brazil)

  • Patrick Guidotti

    (Department of Mathematics, University of California Irvine, 340 Rowland Hall, Irvine, CA 92697, USA)

  • Odemir Martinez Bruno

    (São Carlos Institute of Physics, University of São Paulo, São Carlos – SP, PO Box 369, 13560-970, Brazil)

Abstract

The main goal of this paper is to study the addition of a new preprocessing step in order to improve local feature descriptors and texture classification. The preprocessing is implemented by using transformations which help highlight salient features that play a significant role in texture recognition. We evaluate and compare four different competing methods: three different anisotropic diffusion methods including the classical anisotropic Perona–Malik diffusion and two subsequent regularizations of it and the application of a Gaussian kernel, which is the classical multiscale approach in texture analysis. The combination of the transformed images and the original ones are analyzed. The results show that the use of the preprocessing step does lead to an improvement in texture recognition.

Suggested Citation

  • Mariane Barros Neiva & Patrick Guidotti & Odemir Martinez Bruno, 2018. "Enhancing LBP by preprocessing via anisotropic diffusion," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 29(08), pages 1-29, August.
  • Handle: RePEc:wsi:ijmpcx:v:29:y:2018:i:08:n:s0129183118500717
    DOI: 10.1142/S0129183118500717
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0129183118500717
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0129183118500717?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diego Raphael Amancio & Cesar Henrique Comin & Dalcimar Casanova & Gonzalo Travieso & Odemir Martinez Bruno & Francisco Aparecido Rodrigues & Luciano da Fontoura Costa, 2014. "A Systematic Comparison of Supervised Classifiers," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diego R Amancio, 2015. "Probing the Topological Properties of Complex Networks Modeling Short Written Texts," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-17, February.
    2. Adilson Vital & Diego R. Amancio, 2022. "A comparative analysis of local similarity metrics and machine learning approaches: application to link prediction in author citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(10), pages 6011-6028, October.
    3. Jorge A. V. Tohalino & Laura V. C. Quispe & Diego R. Amancio, 2021. "Analyzing the relationship between text features and grants productivity," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4255-4275, May.
    4. Ferraz de Arruda, Henrique & Reia, Sandro Martinelli & Silva, Filipi Nascimento & Amancio, Diego Raphael & da Fontoura Costa, Luciano, 2022. "Finding contrasting patterns in rhythmic properties between prose and poetry," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    5. Diego R. Amancio & Osvaldo N. Oliveira jr & Luciano F. Costa, 2015. "Topological-collaborative approach for disambiguating authors’ names in collaborative networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 465-485, January.
    6. Yu-Tso Chen & Chi-Hua Chen & Szu Wu & Chi-Chun Lo, 2018. "A Two-Step Approach for Classifying Music Genre on the Strength of AHP Weighted Musical Features," Mathematics, MDPI, vol. 7(1), pages 1-17, December.
    7. Tohalino, Jorge A.V. & Amancio, Diego R., 2022. "On predicting research grants productivity via machine learning," Journal of Informetrics, Elsevier, vol. 16(2).
    8. Diego Raphael Amancio, 2015. "Comparing the topological properties of real and artificially generated scientific manuscripts," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1763-1779, December.
    9. Mayra Z Rodriguez & Cesar H Comin & Dalcimar Casanova & Odemir M Bruno & Diego R Amancio & Luciano da F Costa & Francisco A Rodrigues, 2019. "Clustering algorithms: A comparative approach," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-34, January.
    10. Guerreiro, Lucas & Silva, Filipi N. & Amancio, Diego R., 2024. "Recovering network topology and dynamics from sequences: A machine learning approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    11. Priscila T M Saito & Rodrigo Y M Nakamura & Willian P Amorim & João P Papa & Pedro J de Rezende & Alexandre X Falcão, 2015. "Choosing the Most Effective Pattern Classification Model under Learning-Time Constraint," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-23, June.
    12. Nguyen Minh Tien & Cyril Labbé, 2018. "Detecting automatically generated sentences with grammatical structure similarity," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 1247-1271, August.
    13. Ranjit Panigrahi & Samarjeet Borah & Akash Kumar Bhoi & Muhammad Fazal Ijaz & Moumita Pramanik & Rutvij H. Jhaveri & Chiranji Lal Chowdhary, 2021. "Performance Assessment of Supervised Classifiers for Designing Intrusion Detection Systems: A Comprehensive Review and Recommendations for Future Research," Mathematics, MDPI, vol. 9(6), pages 1-32, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijmpcx:v:29:y:2018:i:08:n:s0129183118500717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijmpc/ijmpc.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.