IDEAS home Printed from https://ideas.repec.org/a/wsi/ijmpcx/v26y2015i03ns0129183115500308.html
   My bibliography  Save this article

Attack robustness of cascading load model in interdependent networks

Author

Listed:
  • Jianwei Wang

    (School of Business Administration, Northeastern University, Shenyang 110819, P. R. China)

  • Yuedan Wu

    (School of Business Administration, Northeastern University, Shenyang 110819, P. R. China)

  • Yun Li

    (School of Business Administration, Northeastern University, Shenyang 110819, P. R. China)

Abstract

Considering the weight of a node and the coupled strength of two interdependent nodes in the different networks, we propose a method to assign the initial load of a node and construct a new cascading load model in the interdependent networks. Assuming that a node in one network will fail if its degree is 0 or its dependent node in the other network is removed from the network or the load on it exceeds its capacity, we study the influences of the assortative link (AL) and the disassortative link (DL) patterns between two networks on the robustness of the interdependent networks against cascading failures. For better evaluating the network robustness, from the local perspective of a node we present a new measure to qualify the network resiliency after targeted attacks. We show that the AL patterns between two networks can improve the robust level of the entire interdependent networks. Moreover, we obtain how to efficiently allocate the initial load and select some nodes to be protected so as to maximize the network robustness against cascading failures. In addition, we find that some nodes with the lower load are more likely to trigger the cascading propagation when the distribution of the load is more even, and also give the reasonable explanation. Our findings can help to design the robust interdependent networks and give the reasonable suggestion to optimize the allocation of the protection resources.

Suggested Citation

  • Jianwei Wang & Yuedan Wu & Yun Li, 2015. "Attack robustness of cascading load model in interdependent networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 26(03), pages 1-14.
  • Handle: RePEc:wsi:ijmpcx:v:26:y:2015:i:03:n:s0129183115500308
    DOI: 10.1142/S0129183115500308
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0129183115500308
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0129183115500308?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Shangjia & Wang, Haizhong & Mostafizi, Alireza & Song, Xuan, 2020. "A network-of-networks percolation analysis of cascading failures in spatially co-located road-sewer infrastructure networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    2. Cui, Pengshuai & Zhu, Peidong & Shao, Chengcheng & Xun, Peng, 2017. "Cascading failures in interdependent networks due to insufficient received support capability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 777-788.
    3. Su Liu & Chengshuang YIN & Dingjun Chen & Shaoquan Ni, 2020. "Modelling and impact analysis of interdependent characteristics on cascading overload failure of syncretic railway networks," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-16, September.
    4. Zhang, Jiarui & Huang, Jian & Zhang, Zhongjie, 2023. "Analysis of the effect of node attack method on cascading failures in multi-layer directed networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    5. Li, Ruimeng & Yang, Naiding & Zhang, Yanlu & Liu, Hui & Zhang, Mingzhen, 2021. "Impacts of module–module aligned patterns on risk cascading propagation in complex product development (CPD) interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    6. Hausken, Kjell, 2017. "Defense and attack for interdependent systems," European Journal of Operational Research, Elsevier, vol. 256(2), pages 582-591.
    7. Cui, Pengshuai & Zhu, Peidong & Wang, Ke & Xun, Peng & Xia, Zhuoqun, 2018. "Enhancing robustness of interdependent network by adding connectivity and dependence links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 185-197.
    8. Qi, Xiaogang & Yang, Guizhen & Liu, Lifang, 2020. "Robustness analysis of the networks in cascading failures with controllable parameters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    9. Wang, Tao & Cheng, Heming & Wang, Xiaoxia, 2020. "A link addition method based on uniformity of node degree in interdependent power grids and communication networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    10. Bachmann, Ivana & Valdés, Valeria & Bustos-Jiménez, Javier & Bustos, Benjamin, 2022. "Effect of adding physical links on the robustness of the Internet modeled as a physical–logical interdependent network using simple strategies," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
    11. Wang, Ning & Jin, Zi-Yang & Zhao, Jiao, 2021. "Cascading failures of overload behaviors on interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    12. Tian, Meng & Dong, Zhengcheng & Cui, Mingjian & Wang, Jianhui & Wang, Xianpei & Zhao, Le, 2019. "Energy-supported cascading failure model on interdependent networks considering control nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 195-204.
    13. Hausken, Kjell, 2024. "Fifty Years of Operations Research in Defense," European Journal of Operational Research, Elsevier, vol. 318(2), pages 355-368.
    14. Zhang, Yanlu & Yang, Naiding, 2018. "Vulnerability analysis of interdependent R&D networks under risk cascading propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 1056-1068.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijmpcx:v:26:y:2015:i:03:n:s0129183115500308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijmpc/ijmpc.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.