IDEAS home Printed from https://ideas.repec.org/a/wsi/ijmpcx/v24y2013i04ns0129183113500241.html
   My bibliography  Save this article

Interactions Of Pedestrians Interlaced In T-Shaped Structure Using A Modified Multi-Field Cellular Automaton

Author

Listed:
  • ZHIJIAN FU

    (State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, P. R. China)

  • LIZHONG YANG

    (State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, P. R. China)

  • PING RAO

    (State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, P. R. China)

  • TAOLIN ZHANG

    (State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, P. R. China)

Abstract

Little work has been done before in the study of separating pedestrian flow interlaced. Under open boundaries, the interaction of separating pedestrian flow interlaced in a T-shaped structure was simulated, using a modified multi-field cellular automaton updating synchronously. The free-jammed phase transition diagram of pedestrian flow and principles of the pedestrian interference were obtained. The movement of pedestrians is free flow in the low entrance density. While it is a complete jammed flow with the entrance density increasing to a certain level and little difference existing between the left moving probability and the right moving probability. Thus, the dominant factor influencing pedestrian flow is the interference of opposite pedestrian flows due to changing movement directions. And it is changing to an incomplete jammed flow with this difference increasing. Thus, the dominant factor is changing to the interference of the coincident pedestrian flow and the limitation of the bottleneck.

Suggested Citation

  • Zhijian Fu & Lizhong Yang & Ping Rao & Taolin Zhang, 2013. "Interactions Of Pedestrians Interlaced In T-Shaped Structure Using A Modified Multi-Field Cellular Automaton," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 24(04), pages 1-13.
  • Handle: RePEc:wsi:ijmpcx:v:24:y:2013:i:04:n:s0129183113500241
    DOI: 10.1142/S0129183113500241
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0129183113500241
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0129183113500241?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu, Zhijian & Zhou, Xiaodong & Zhu, Kongjin & Chen, Yanqiu & Zhuang, Yifan & Hu, Yuqi & Yang, Lizhong & Chen, Changkun & Li, Jian, 2015. "A floor field cellular automaton for crowd evacuation considering different walking abilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 294-303.
    2. Li, Yongxing & Yang, Xiaoxia & Wang, Zijia & Chen, Liang & Chen, Yanyan, 2022. "Lane-design for mixed pedestrian flow in T-shaped passage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    3. Fu, Zhijian & Yang, Lizhong & Chen, Yanqiu & Zhu, Kongjin & Zhu, Shi, 2013. "The effect of individual tendency on crowd evacuation efficiency under inhomogeneous exit attraction using a static field modified FFCA model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 6090-6099.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijmpcx:v:24:y:2013:i:04:n:s0129183113500241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijmpc/ijmpc.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.