IDEAS home Printed from https://ideas.repec.org/a/wsi/ijmpcx/v16y2005i11ns0129183105008266.html
   My bibliography  Save this article

Nonequilibrium Phase Transitions In Model Ferromagnets: A Review

Author

Listed:
  • MUKTISH ACHARYYA

    (Department of Physics, Krishnanagar Government College, PO-Krishnanagar, Dist-Nadia, PIN-741101, West-Bengal, India)

Abstract

The thermodynamical behaviors of ferromagnetic systems in equilibrium are well studied. However, the ferromagnetic systems far from equilibrium became an interesting field of research in last few decades. Recent exploration of ferromagnetic systems in the presence of a steady magnetic field are also studied by using standard tools of equilibrium statistical physics. The ferromagnet in the presence of time-dependent magnetic field, shows various interesting phenomena. An usual response of a ferromagnet in the presence of a sinusoidally oscillating magnetic field is the hysteresis. Apart from this hysteretic response, the nonequilibrium dynamic phase transition is also a very interesting phenomenon. In this chapter, the nonequilibrium dynamic phase transitions of the model ferromagnetic systems in presence of time-dependent magnetic field are discussed. For this kind of nonequilibrium phase transition, one cannot employ the standard techniques of equilibrium statistical mechanics. The recent developments in this direction are mainly based on numerical simulation (Monte Carlo). The Monte Carlo simulation of kinetic Ising model, in presence of sinusoidally oscillating (in time but uniform over space) magnetic field, is extensively performed to study the nonequilibrium dynamic phase transition. The temperature variations of dynamic order parameter, dynamic specific heat, dynamic relaxation time etc. near the transition point are discussed. The appearance and behaviors of a dynamic length scale and a dynamic time scale near the transition point are also discussed. All these studies indicate that this proposed dynamic transition is a nonequilibrium thermodynamic phase transition. The disorder (quenched) induced zero temperature (athermal) dynamic transition is studied in random field Ising ferromagnet. The dynamic transition in the Heisenberg ferromagnet is also studied. The nature of this transition in the Heisenberg ferromagnet depends on the anisotropy and the polarisation of the applied time varying magnetic field. The anisotropic Heisenberg ferromagnet in the presence of elliptically polarised magnetic field shows multiple dynamic transitions. This multiple dynamic transitions in anisotropic Heisenberg ferromagnet are discussed here. Recent experimental evidences of dynamic transitions are also discussed very briefly.

Suggested Citation

  • Muktish Acharyya, 2005. "Nonequilibrium Phase Transitions In Model Ferromagnets: A Review," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 16(11), pages 1631-1670.
  • Handle: RePEc:wsi:ijmpcx:v:16:y:2005:i:11:n:s0129183105008266
    DOI: 10.1142/S0129183105008266
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0129183105008266
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0129183105008266?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijmpcx:v:16:y:2005:i:11:n:s0129183105008266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijmpc/ijmpc.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.