IDEAS home Printed from https://ideas.repec.org/a/wsi/ijmpcx/v09y1998i02ns0129183198000170.html
   My bibliography  Save this article

Computational Power of Quantum Machines, Quantum Grammars and Feasible Computation

Author

Listed:
  • E. V. Krishnamurthy

    (Computer Sciences Laboratory, Research School of Information Sciences and Engineering, Australian National University, Canberra, ACT 0200, Australia)

Abstract

This paper studies the computational power of quantum computers to explore as to whether they can recognize properties which are in nondeterministic polynomial-time class (NP) and beyond. To study the computational power, we use the Feynman's path integral (FPI) formulation of quantum mechanics. From a computational point of view the Feynman's path integral computes a quantum dynamical analogue of thek-ary relation computed by an Alternating Turing machine (ATM) using AND-OR Parallelism. Hence, if we can find a suitable mapping function between an instance of a mathematical problem and the corresponding interference problem, using suitable potential functions for which FPI can be integrated exactly, the computational power of a quantum computer can be bounded to that of an alternating Turing machine that can solve problems in NP (e.g, factorization problem) and in polynomial space. Unfortunately, FPI is exactly integrable only for a few problems (e.g., the harmonic oscillator) involving quadratic potentials; otherwise, they may be only approximately computable or noncomputable. This means we cannot in general solve all quantum dynamical problems exactly except for those special cases of quadratic potentials, e.g., harmonic oscillator. Since there is a one to one correspondence between the quantum mechanical problems that can be analytically solved and the path integrals that can be exactly evaluated, we can say that the noncomputability of FPI implies quantum unsolvability. This is the analogue of classical unsolvability.The Feynman's path graph can be considered as a semantic parse graph for the quantum mechanical sentence. It provides a semantic valuation function of the terminal sentence based on probability amplitudes to disambiguate a given quantum description and obtain an interpretation in a linear time. In Feynman's path integral, the kernels are partially ordered over time (different alternate paths acting concurrently at the same time) and multiplied. The semantic valuation is computable only if the FPI is computable. Thus both the expressive power and complexity aspects quantum computing are mirrored by the exact and efficient integrability of FPI.

Suggested Citation

  • E. V. Krishnamurthy, 1998. "Computational Power of Quantum Machines, Quantum Grammars and Feasible Computation," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 213-241.
  • Handle: RePEc:wsi:ijmpcx:v:09:y:1998:i:02:n:s0129183198000170
    DOI: 10.1142/S0129183198000170
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0129183198000170
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0129183198000170?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijmpcx:v:09:y:1998:i:02:n:s0129183198000170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijmpc/ijmpc.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.