IDEAS home Printed from https://ideas.repec.org/a/wsi/ijitdm/v18y2019i01ns0219622018500360.html
   My bibliography  Save this article

Decisor: A Software Tool to Drive Complex Decisions with Analytic Hierarchy Process

Author

Listed:
  • Ricardo M. Czekster

    (University of Santa Cruz do Sul (UNISC), Graduate Program in Systems and Industrial Processes (PPGSPI), Avenida Independência, 2293, CEP 96815-900, Santa Cruz do Sul, RS, Brazil)

  • Henrique Jung De Carvalho

    (University of Santa Cruz do Sul (UNISC), Graduate Program in Systems and Industrial Processes (PPGSPI), Avenida Independência, 2293, CEP 96815-900, Santa Cruz do Sul, RS, Brazil)

  • Gabriela Zucchetti Kessler

    (University of Santa Cruz do Sul (UNISC), Graduate Program in Systems and Industrial Processes (PPGSPI), Avenida Independência, 2293, CEP 96815-900, Santa Cruz do Sul, RS, Brazil)

  • Liane Mahlmann Kipper

    (University of Santa Cruz do Sul (UNISC), Graduate Program in Systems and Industrial Processes (PPGSPI), Avenida Independência, 2293, CEP 96815-900, Santa Cruz do Sul, RS, Brazil)

  • Thais Webber

    (University of Santa Cruz do Sul (UNISC), Graduate Program in Systems and Industrial Processes (PPGSPI), Avenida Independência, 2293, CEP 96815-900, Santa Cruz do Sul, RS, Brazil)

Abstract

Addressing consistent and reliable decision-making are crucial activities when choosing seemingly related alternatives for a set of criteria. Models and methods for aiding decisions such as analytic hierarchy process (AHP) were developed to handle quantified assessments of quality attributes, usually intangible and numerically hard to cope. We introduce the Decisor software tool to assist the use of AHP to drive complex decision modeling. We present a study of related tools describing advantages and drawbacks. The tool is user friendly, with intuitive data entry fields. Users may input alternatives and criteria, assigning weights from different judgment scales. Decisor’s main characteristic is its simple interface where the tool computes priority vectors for all alternatives and its consistency rates. It is also possible to operate with negative weighting, inferring Benefits, Opportunities, Costs, and Risks. The tool implements Group Decisions, using the geometric mean to combine criteria comparisons from selected stakeholders.

Suggested Citation

  • Ricardo M. Czekster & Henrique Jung De Carvalho & Gabriela Zucchetti Kessler & Liane Mahlmann Kipper & Thais Webber, 2019. "Decisor: A Software Tool to Drive Complex Decisions with Analytic Hierarchy Process," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 65-86, January.
  • Handle: RePEc:wsi:ijitdm:v:18:y:2019:i:01:n:s0219622018500360
    DOI: 10.1142/S0219622018500360
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219622018500360
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219622018500360?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Corrente, Salvatore & Greco, Salvatore & Słowiński, Roman, 2013. "Multiple Criteria Hierarchy Process with ELECTRE and PROMETHEE," Omega, Elsevier, vol. 41(5), pages 820-846.
    2. Schenkerman, Stan, 1994. "Avoiding rank reversal in AHP decision-support models," European Journal of Operational Research, Elsevier, vol. 74(3), pages 407-419, May.
    3. Gang Kou & Yanqun Lu & Yi Peng & Yong Shi, 2012. "Evaluation Of Classification Algorithms Using Mcdm And Rank Correlation," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 197-225.
    4. Vaidya, Omkarprasad S. & Kumar, Sushil, 2006. "Analytic hierarchy process: An overview of applications," European Journal of Operational Research, Elsevier, vol. 169(1), pages 1-29, February.
    5. Fatemeh Zahedi, 1986. "The Analytic Hierarchy Process---A Survey of the Method and its Applications," Interfaces, INFORMS, vol. 16(4), pages 96-108, August.
    6. Büyüközkan, Gülçin & Feyzioglu, Orhan & Nebol, Erdal, 2008. "Selection of the strategic alliance partner in logistics value chain," International Journal of Production Economics, Elsevier, vol. 113(1), pages 148-158, May.
    7. Bertrand Mareschal & Jean Pierre Brans & Philippe Vincke, 1986. "How to select and how to rank projects: the Prométhée method," ULB Institutional Repository 2013/9307, ULB -- Universite Libre de Bruxelles.
    8. Brans, J. P. & Vincke, Ph. & Mareschal, B., 1986. "How to select and how to rank projects: The method," European Journal of Operational Research, Elsevier, vol. 24(2), pages 228-238, February.
    9. Wenshuai Wu & Gang Kou, 2016. "A group consensus model for evaluating real estate investment alternatives," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziyue Zeng & Guoqiang Tang & Di Long & Chao Zeng & Meihong Ma & Yang Hong & Hui Xu & Jing Xu, 2016. "A cascading flash flood guidance system: development and application in Yunnan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2071-2093, December.
    2. Ormerod, Richard J. & Ulrich, Werner, 2013. "Operational research and ethics: A literature review," European Journal of Operational Research, Elsevier, vol. 228(2), pages 291-307.
    3. Martina Kuncova & Jana Seknickova, 2022. "Two-stage weighted PROMETHEE II with results’ visualization," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(2), pages 547-571, June.
    4. Emre Çalişkan & Erdem Aksakal & Saliha Çetinyokuş & Tahsin Çetinyokuş, 2019. "Hybrid Use of Likert Scale-Based AHP and PROMETHEE Methods for Hazard Analysis and Consequence Modeling (HACM) Software Selection," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1689-1715, September.
    5. Thomas L. Saaty & Daji Ergu, 2015. "When is a Decision-Making Method Trustworthy? Criteria for Evaluating Multi-Criteria Decision-Making Methods," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(06), pages 1171-1187, November.
    6. Schneider, Frank, 2008. "Multiple criteria decision making in application layer networks," Bayreuth Reports on Information Systems Management 36, University of Bayreuth, Chair of Information Systems Management.
    7. Irina Vinogradova, 2019. "Multi-Attribute Decision-Making Methods as a Part of Mathematical Optimization," Mathematics, MDPI, vol. 7(10), pages 1-21, October.
    8. Yamei Wang & Zhongwu Li & Zhenghong Tang & Guangming Zeng, 2011. "A GIS-Based Spatial Multi-Criteria Approach for Flood Risk Assessment in the Dongting Lake Region, Hunan, Central China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3465-3484, October.
    9. Saul I. Gass, 2005. "Model World: The Great Debate—MAUT Versus AHP," Interfaces, INFORMS, vol. 35(4), pages 308-312, August.
    10. Shahryar Monghasemi & Mohammad Reza Nikoo & Mohammad Ali Khaksar Fasaee & Jan Adamowski, 2017. "A Hybrid of Genetic Algorithm and Evidential Reasoning for Optimal Design of Project Scheduling: A Systematic Negotiation Framework for Multiple Decision-Makers," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(02), pages 389-420, March.
    11. Roman Vavrek, 2019. "Evaluation of the Impact of Selected Weighting Methods on the Results of the TOPSIS Technique," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(06), pages 1821-1843, November.
    12. Scholz, Michael & Pfeiffer, Jella & Rothlauf, Franz, 2017. "Using PageRank for non-personalized default rankings in dynamic markets," European Journal of Operational Research, Elsevier, vol. 260(1), pages 388-401.
    13. Mustafa Batuhan Ayhan, 2018. "A New Decision Making Approach for Supplier Selection: Hesitant Fuzzy Axiomatic Design," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1085-1117, July.
    14. Ting Kuo & Ming-Hui Chen, 2022. "On Indeterminacy of Interval Multiplicative Pairwise Comparison Matrix," Mathematics, MDPI, vol. 10(4), pages 1-18, February.
    15. Macharis, Cathy & Bernardini, Annalia, 2015. "Reviewing the use of Multi-Criteria Decision Analysis for the evaluation of transport projects: Time for a multi-actor approach," Transport Policy, Elsevier, vol. 37(C), pages 177-186.
    16. Aleksandra Król & Jerzy Księżak & Elżbieta Kubińska & Stelios Rozakis, 2018. "Evaluation of Sustainability of Maize Cultivation in Poland. A Prospect Theory—PROMETHEE Approach," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    17. Pelissari, Renata & José Abackerli, Alvaro & Ben Amor, Sarah & Célia Oliveira, Maria & Infante, Kleber Manoel, 2021. "Multiple criteria hierarchy process for sorting problems under uncertainty applied to the evaluation of the operational maturity of research institutions," Omega, Elsevier, vol. 103(C).
    18. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    19. Guh, Yuh-Yuan, 1997. "Introduction to a new weighting method -- Hierarchy consistency analysis," European Journal of Operational Research, Elsevier, vol. 102(1), pages 215-226, October.
    20. Hajkowicz, Stefan, 2006. "Taking a closer look at multiple criteria analysis and economic evaluation," 2006 Conference (50th), February 8-10, 2006, Sydney, Australia 139785, Australian Agricultural and Resource Economics Society.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijitdm:v:18:y:2019:i:01:n:s0219622018500360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijitdm/ijitdm.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.