IDEAS home Printed from https://ideas.repec.org/a/wsi/ijfexx/v07y2020i01ns2424786320500048.html
   My bibliography  Save this article

A time consistent derivative strategy

Author

Listed:
  • Walter Mudzimbabwe

    (Department of Mathematics, University of Zimbabwe, P. O. Box MP 167, Mount Pleasant, Harare, Zimbabwe2School of Computer Science and Applied Mathematics, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein 2000, Johannesburg, South Africa)

Abstract

In this paper, we derive a time consistent investment strategy for an investor who can invest not only in a bond and stock but in a derivative as well. In order to capture typical features shown by stocks, the stock and by extension the derivative depends on stochastic volatility. We assume that the investor is interested in maximizing a mean–variance utility function. Since the problem is time-inconsistent, we formulate the problem in game theoretic way and seek a subgame Nash equilibrium as the strategy. By solving an extended HJB equation system, we derive explicit time-consistent strategy and the corresponding efficient frontier. In order to show efficiency of the derivative strategy, we compare it with a strategy for the case of a market without a derivative. Our results show that efficient frontier for an investor with a derivative is higher than without derivative.

Suggested Citation

  • Walter Mudzimbabwe, 2020. "A time consistent derivative strategy," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 7(01), pages 1-25, March.
  • Handle: RePEc:wsi:ijfexx:v:07:y:2020:i:01:n:s2424786320500048
    DOI: 10.1142/S2424786320500048
    as

    Download full text from publisher

    File URL: https://www.worldscientific.com/doi/abs/10.1142/S2424786320500048
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S2424786320500048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guan, Guohui & Liang, Zongxia, 2015. "Mean–variance efficiency of DC pension plan under stochastic interest rate and mean-reverting returns," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 99-109.
    2. Shen, Yang & Zeng, Yan, 2015. "Optimal investment–reinsurance strategy for mean–variance insurers with square-root factor process," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 118-137.
    3. Zeng, Yan & Li, Zhongfei, 2011. "Optimal time-consistent investment and reinsurance policies for mean-variance insurers," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 145-154, July.
    4. Wu, Huiling & Zhang, Ling & Chen, Hua, 2015. "Nash equilibrium strategies for a defined contribution pension management," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 202-214.
    5. Li, Danping & Rong, Ximin & Zhao, Hui, 2015. "Time-consistent reinsurance–investment strategy for a mean–variance insurer under stochastic interest rate model and inflation risk," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 28-44.
    6. Li, Zhongfei & Zeng, Yan & Lai, Yongzeng, 2012. "Optimal time-consistent investment and reinsurance strategies for insurers under Heston’s SV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 191-203.
    7. Liu, Jun & Pan, Jun, 2003. "Dynamic derivative strategies," Journal of Financial Economics, Elsevier, vol. 69(3), pages 401-430, September.
    8. Yuan-Hung Hsuku, 2007. "Dynamic consumption and asset allocation with derivative securities," Quantitative Finance, Taylor & Francis Journals, vol. 7(2), pages 137-149.
    9. Escobar, Marcos & Ferrando, Sebastian & Rubtsov, Alexey, 2015. "Robust portfolio choice with derivative trading under stochastic volatility," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 142-157.
    10. K. Ronnie Sircar & George Papanicolaou, 1999. "Stochastic volatility, smile & asymptotics," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(2), pages 107-145.
    11. Zeng, Yan & Li, Danping & Chen, Zheng & Yang, Zhou, 2018. "Ambiguity aversion and optimal derivative-based pension investment with stochastic income and volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 88(C), pages 70-103.
    12. Zeng, Yan & Li, Zhongfei & Lai, Yongzeng, 2013. "Time-consistent investment and reinsurance strategies for mean–variance insurers with jumps," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 498-507.
    13. Liang, Zongxia & Song, Min, 2015. "Time-consistent reinsurance and investment strategies for mean–variance insurer under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 66-76.
    14. Aytaç Ílhan & Mattias Jonsson & Ronnie Sircar, 2005. "Optimal investment with derivative securities," Finance and Stochastics, Springer, vol. 9(4), pages 585-595, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue, Xiaole & Wei, Pengyu & Weng, Chengguo, 2019. "Derivatives trading for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 40-53.
    2. Yan, Tingjin & Wong, Hoi Ying, 2020. "Open-loop equilibrium reinsurance-investment strategy under mean–variance criterion with stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 105-119.
    3. Wang, Hao & Wang, Rongming & Wei, Jiaqin, 2019. "Time-consistent investment-proportional reinsurance strategy with random coefficients for mean–variance insurers," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 104-114.
    4. Zeng, Yan & Li, Danping & Chen, Zheng & Yang, Zhou, 2018. "Ambiguity aversion and optimal derivative-based pension investment with stochastic income and volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 88(C), pages 70-103.
    5. Haiying Zhou & Huainian Zhu, 2024. "Optimal Reinsurance and Derivative-Based Investment Decisions for Insurers with Mean-Variance Preference," Mathematics, MDPI, vol. 12(13), pages 1-20, June.
    6. Li, Danping & Rong, Ximin & Zhao, Hui, 2015. "Time-consistent reinsurance–investment strategy for a mean–variance insurer under stochastic interest rate model and inflation risk," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 28-44.
    7. van Staden, Pieter M. & Dang, Duy-Minh & Forsyth, Peter A., 2021. "The surprising robustness of dynamic Mean-Variance portfolio optimization to model misspecification errors," European Journal of Operational Research, Elsevier, vol. 289(2), pages 774-792.
    8. Van Staden, Pieter M. & Dang, Duy-Minh & Forsyth, Peter A., 2018. "Time-consistent mean–variance portfolio optimization: A numerical impulse control approach," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 9-28.
    9. Yang Shen & Bin Zou, 2021. "Mean-Variance Investment and Risk Control Strategies -- A Time-Consistent Approach via A Forward Auxiliary Process," Papers 2101.03954, arXiv.org.
    10. Li, Danping & Shen, Yang & Zeng, Yan, 2018. "Dynamic derivative-based investment strategy for mean–variance asset–liability management with stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 72-86.
    11. Guohui Guan, 2020. "Equilibrium and Precommitment Mean-Variance Portfolio Selection Problem with Partially Observed Price Index and Multiple Assets," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 25-47, March.
    12. Jiaqi Zhu & Shenghong Li, 2020. "Time-Consistent Investment and Reinsurance Strategies for Mean-Variance Insurers under Stochastic Interest Rate and Stochastic Volatility," Mathematics, MDPI, vol. 8(12), pages 1-22, December.
    13. Shen, Yang & Zou, Bin, 2021. "Mean–variance investment and risk control strategies — A time-consistent approach via a forward auxiliary process," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 68-80.
    14. Wei, Pengyu & Yang, Charles & Zhuang, Yi, 2023. "Robust consumption and portfolio choice with derivatives trading," European Journal of Operational Research, Elsevier, vol. 304(2), pages 832-850.
    15. Wang, Pei & Li, Zhongfei, 2018. "Robust optimal investment strategy for an AAM of DC pension plans with stochastic interest rate and stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 80(C), pages 67-83.
    16. Zhang, Jingong & Tan, Ken Seng & Weng, Chengguo, 2017. "Optimal hedging with basis risk under mean–variance criterion," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 1-15.
    17. Hiroaki Hata & Shuenn-Jyi Sheu & Li-Hsien Sun, 2019. "Expected exponential utility maximization of insurers with a general diffusion factor model : The complete market case," Papers 1903.08957, arXiv.org.
    18. Wang, Ning & Zhang, Yumo, 2024. "Robust asset-liability management games for n players under multivariate stochastic covariance models," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 67-98.
    19. Liyuan Wang & Zhiping Chen, 2019. "Stochastic Game Theoretic Formulation for a Multi-Period DC Pension Plan with State-Dependent Risk Aversion," Mathematics, MDPI, vol. 7(1), pages 1-16, January.
    20. Alia, Ishak & Chighoub, Farid & Sohail, Ayesha, 2016. "A characterization of equilibrium strategies in continuous-time mean–variance problems for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 212-223.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijfexx:v:07:y:2020:i:01:n:s2424786320500048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscientific.com/worldscinet/ijfe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.