IDEAS home Printed from https://ideas.repec.org/a/wsi/ijfexx/v03y2016i02ns2424786316500110.html
   My bibliography  Save this article

A note on the valuation of CDS options and extension risk in a structural model with jumps

Author

Listed:
  • Amelie Hüttner

    (Chair of Mathematical Finance, Technische Universität München, Parkring 11, 85748 Garching-Hochbrück, Germany)

  • Matthias Scherer

    (Chair of Mathematical Finance, Technische Universität München, Parkring 11, 85748 Garching-Hochbrück, Germany)

Abstract

We consider the valuation of single name CDS options (CDSO) and related optionalities, particularly extension risk, in the structural default model introduced by Chen and Kou (2009). This jump-diffusion based model is able to generate realistic dynamics for CDS spreads and has decent calibration performance. Due to the European character of the considered options, they can be valued with an efficient Monte Carlo algorithm based on Brownian bridges, adapted from Ruf and Scherer (2011). In contrast to the intensity approach, structural models offer a link to the equity side of a firm’s capital structure, possibly enabling to hedge CDS options with instruments other than CDS.

Suggested Citation

  • Amelie Hüttner & Matthias Scherer, 2016. "A note on the valuation of CDS options and extension risk in a structural model with jumps," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 1-16, June.
  • Handle: RePEc:wsi:ijfexx:v:03:y:2016:i:02:n:s2424786316500110
    DOI: 10.1142/S2424786316500110
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S2424786316500110
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S2424786316500110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tomasz Bielecki & Monique Jeanblanc & Marek Rutkowski, 2011. "Hedging of a credit default swaption in the CIR default intensity model," Finance and Stochastics, Springer, vol. 15(3), pages 541-572, September.
    2. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    3. Henrik Jönsson & Wim Schoutens, 2008. "Single name credit default swaptions meet single sided jump models," Review of Derivatives Research, Springer, vol. 11(1), pages 153-169, March.
    4. Nan Chen & S. G. Kou, 2009. "Credit Spreads, Optimal Capital Structure, And Implied Volatility With Endogenous Default And Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 343-378, July.
    5. Damiano Brigo & Naoufel El-Bachir, 2007. "An exact formula for default swaptions' pricing in the SSRJD stochastic intensity model," ICMA Centre Discussion Papers in Finance icma-dp2007-14, Henley Business School, University of Reading.
    6. Black, Fischer & Cox, John C, 1976. "Valuing Corporate Securities: Some Effects of Bond Indenture Provisions," Journal of Finance, American Finance Association, vol. 31(2), pages 351-367, May.
    7. Marek Rutkowski & Anthony Armstrong, 2009. "Valuation Of Credit Default Swaptions And Credit Default Index Swaptions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(07), pages 1027-1053.
    8. Farshid Jamshidian, 2004. "Valuation of credit default swaps and swaptions," Finance and Stochastics, Springer, vol. 8(3), pages 343-371, August.
    9. Zhou, Chunsheng, 2001. "The term structure of credit spreads with jump risk," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 2015-2040, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    2. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 5, July-Dece.
    3. Liu, Liang-Chih & Dai, Tian-Shyr & Wang, Chuan-Ju, 2016. "Evaluating corporate bonds and analyzing claim holders’ decisions with complex debt structure," Journal of Banking & Finance, Elsevier, vol. 72(C), pages 151-174.
    4. Olivier Courtois & Xiaoshan Su, 2020. "Structural Pricing of CoCos and Deposit Insurance with Regime Switching and Jumps," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 27(4), pages 477-520, December.
    5. Perrakis, Stylianos & Zhong, Rui, 2015. "Credit spreads and state-dependent volatility: Theory and empirical evidence," Journal of Banking & Finance, Elsevier, vol. 55(C), pages 215-231.
    6. Stylianos Perrakis & Rui Zhong, 2017. "Liquidity Risk and Volatility Risk in Credit Spread Models: A Unified Approach," European Financial Management, European Financial Management Association, vol. 23(5), pages 873-901, October.
    7. Ayadi, Mohamed A. & Ben-Ameur, Hatem & Fakhfakh, Tarek, 2016. "A dynamic program for valuing corporate securities," European Journal of Operational Research, Elsevier, vol. 249(2), pages 751-770.
    8. Murphy, Austin & Headley, Adrian, 2022. "An empirical evaluation of alternative fundamental models of credit spreads," International Review of Financial Analysis, Elsevier, vol. 81(C).
    9. Christopher L. Culp & Yoshio Nozawa & Pietro Veronesi, 2014. "Option-Based Credit Spreads," NBER Working Papers 20776, National Bureau of Economic Research, Inc.
    10. Luca Benzoni & Lorenzo Garlappi & Robert S. Goldstein, 2019. "Asymmetric Information, Dynamic Debt Issuance, and the Term Structure of Credit Spreads," Working Paper Series WP-2019-8, Federal Reserve Bank of Chicago.
    11. Batten, Jonathan & Hogan, Warren, 2002. "A perspective on credit derivatives," International Review of Financial Analysis, Elsevier, vol. 11(3), pages 251-278.
    12. Hackbarth, Dirk & Miao, Jianjun & Morellec, Erwan, 2006. "Capital structure, credit risk, and macroeconomic conditions," Journal of Financial Economics, Elsevier, vol. 82(3), pages 519-550, December.
    13. Flavia Barsotti, 2012. "Optimal Capital Structure with Endogenous Default and Volatility Risk," Working Papers - Mathematical Economics 2012-02, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    14. Jean-David Fermanian, 2020. "On the Dependence between Default Risk and Recovery Rates in Structural Models," Annals of Economics and Statistics, GENES, issue 140, pages 45-82.
    15. Chiarella, Carl & Fanelli, Viviana & Musti, Silvana, 2011. "Modelling the evolution of credit spreads using the Cox process within the HJM framework: A CDS option pricing model," European Journal of Operational Research, Elsevier, vol. 208(2), pages 95-108, January.
    16. Hett, Florian & Schmidt, Alexander, 2017. "Bank rescues and bailout expectations: The erosion of market discipline during the financial crisis," Journal of Financial Economics, Elsevier, vol. 126(3), pages 635-651.
    17. Abel Elizalde, 2006. "Credit Risk Models II: Structural Models," Working Papers wp2006_0606, CEMFI.
    18. Moraux, Franck, 2004. "Modeling the business risk of financially weakened firms: A new approach for corporate bond pricing," International Review of Financial Analysis, Elsevier, vol. 13(1), pages 47-61.
    19. Mercadier, Mathieu & Lardy, Jean-Pierre, 2019. "Credit spread approximation and improvement using random forest regression," European Journal of Operational Research, Elsevier, vol. 277(1), pages 351-365.
    20. Nystrom, Kaj & Skoglund, Jimmy, 2006. "A credit risk model for large dimensional portfolios with application to economic capital," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2163-2197, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijfexx:v:03:y:2016:i:02:n:s2424786316500110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscientific.com/worldscinet/ijfe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.