IDEAS home Printed from https://ideas.repec.org/a/wsi/igtrxx/v09y2007i02ns0219198907001412.html
   My bibliography  Save this article

Measuring The Power Of Parties Within Government Coalitions

Author

Listed:
  • HARALD WIESE

    (Universität Leipzig, Postfach 920, 04009 Leipzig, Germany)

Abstract

The paper presents a coalition-structure value that is meant to capture outside options of players in a cooperative game. It deviates from the Aumann-Drèze value by violating the null-player axiom. We use this value as a power index and apply it to weighted majority games.

Suggested Citation

  • Harald Wiese, 2007. "Measuring The Power Of Parties Within Government Coalitions," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 307-322.
  • Handle: RePEc:wsi:igtrxx:v:09:y:2007:i:02:n:s0219198907001412
    DOI: 10.1142/S0219198907001412
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219198907001412
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219198907001412?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven J. Brams & Todd R. Kaplan, 2002. "Dividing the Indivisible: Procedures for Allocating Cabinet Ministries to Political Parties in a Parliamentary System," Discussion Papers 0202, University of Exeter, Department of Economics.
    2. Brams, Steven J. & Kaplan, Todd R., 2017. "Dividing the indivisible: procedures for allocation cabinet ministries to political parties in a parlamentary system," Center for Mathematical Economics Working Papers 340, Center for Mathematical Economics, Bielefeld University.
    3. Brams,S.L. & Kaplan,T.R., 2002. "Dividing the indivisible : procedures for allocating cabinet ministries to political parties in a parliamentary system," Center for Mathematical Economics Working Papers 340, Center for Mathematical Economics, Bielefeld University.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steven Brams & D. Kilgour & Christian Klamler, 2012. "The undercut procedure: an algorithm for the envy-free division of indivisible items," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 39(2), pages 615-631, July.
    2. Brams, Steven J. & Kilgour, D. Marc & Klamler, Christian, 2013. "Two-Person Fair Division of Indivisible Items: An Efficient, Envy-Free Algorithm," MPRA Paper 47400, University Library of Munich, Germany.
    3. Mithun Chakraborty & Ulrike Schmidt-Kraepelin & Warut Suksompong, 2021. "Picking Sequences and Monotonicity in Weighted Fair Division," Papers 2104.14347, arXiv.org, revised Aug 2021.
    4. Alejandro Ecker & Thomas M. Meyer, 2019. "Fairness and qualitative portfolio allocation in multiparty governments," Public Choice, Springer, vol. 181(3), pages 309-330, December.
    5. Haris Aziz, 2016. "A generalization of the AL method for fair allocation of indivisible objects," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 4(2), pages 307-324, October.

    More about this item

    Keywords

    Power; government coalition; outside option; Aumann-Drèze value; Shapley value; null-player axiom; JEL Classification: C71; JEL Classification: H1;
    All these keywords.

    JEL classification:

    • B4 - Schools of Economic Thought and Methodology - - Economic Methodology
    • C0 - Mathematical and Quantitative Methods - - General
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • C7 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory
    • D5 - Microeconomics - - General Equilibrium and Disequilibrium
    • D7 - Microeconomics - - Analysis of Collective Decision-Making
    • M2 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:igtrxx:v:09:y:2007:i:02:n:s0219198907001412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/igtr/igtr.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.