IDEAS home Printed from https://ideas.repec.org/a/wsi/fracta/v32y2024i06ns0218348x24501068.html
   My bibliography  Save this article

Neutron Point Kinetics Model With A Distributed-Order Fractional Derivative

Author

Listed:
  • F. A. GODÃ NEZ

    (Universidad Nacional Autónoma de México, Instituto de Ingeniería, Departamento de Sistemas Mecánicos, Energéticos y de Transporte, Avenida Universidad 3000, Ciudad Universitaria, Coyoacán 04510 Ciudad de México, México†Unidad de Investigación y Tecnología Aplicadas, Universidad Nacional Autónoma de México, Vía de la Innovación No. 410, Autopista Monterrey-Aeropuerto km. 10 PIIT, Apodaca 66629, Nuevo León, México)

  • G. FERNÃ NDEZ-ANAYA

    (��Departamento de Física y Matemáticas, Universidad Iberoamericana Ciudad de México Prolongación, Paseo de Reforma 880, Lomas de Santa Fe 01219, Ciudad de México, México)

  • S. QUEZADA-GARCÃ A

    (�Universidad Nacional Autónoma de México, Facultad de Ingeniería, Departamento de Sistemas Energéticos, Avendia Universidad 3000, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, México)

  • L. A. QUEZADA-TÉLLEZ

    (�Escuela Superior de Apan, UAEH. Carretera Apan-Calpulalpan km. 8, Colonia Chimalpa Tlalayote, Apan, 43900, Hidalgo, México)

  • M. A. POLO-LABARRIOS

    (��Departamento de Física y Matemáticas, Universidad Iberoamericana Ciudad de México Prolongación, Paseo de Reforma 880, Lomas de Santa Fe 01219, Ciudad de México, México§Universidad Nacional Autónoma de México, Facultad de Ingeniería, Departamento de Sistemas Energéticos, Avendia Universidad 3000, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, México∥à rea de Ingeniería en Recursos Energéticos, Universidad Autónoma Metropolitana-Iztapalapa Avenida, Ferrocarril San Rafael Atlixco 186, Colonia Leyes de Reforma 1era, Sección Iztapalapa, 09310, Ciudad de México, México)

Abstract

In this paper, the solutions of an extended form of the Fractional-order Neutron Point Kinetics (FNPK) equation in terms of Caputo-time derivatives of the same order are investigated. Instead of using a Caputo derivative, a distributed-order fractional derivative in the Caputo sense was employed in the term of the FNPK equation which is multiplied by the reactivity. This term plays an important role in the description of neutron kinetics during the start-up, shutdown, and steady-state processes in nuclear reactors. The extended (DFNPK) model was solved using the beta, normal, bimodal and Dirac delta distributions to investigate their effect on the transient state solutions of the neutron density. Regardless of the distribution used, the most significant finding is that a destabilizing effect on the neutron density is induced when the mode (or the instant of application of the Dirac delta) of the distribution tends to one while maintaining the orders of the Caputo-time derivatives constant. What defines the destabilizing effect are large magnitude oscillations, a rapid decay, and an oscillation-free steady state with a monotonic increase that is parallel to but somewhat above the trend determined by the FNPK equation. The extended model is anticipated to be effective for modeling neutron density dispersion in a highly heterogeneous medium that may be described using distributed derivatives.

Suggested Citation

  • F. A. Godã Nez & G. Fernã Ndez-Anaya & S. Quezada-Garcã A & L. A. Quezada-Tã‰Llez & M. A. Polo-Labarrios, 2024. "Neutron Point Kinetics Model With A Distributed-Order Fractional Derivative," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 32(06), pages 1-18.
  • Handle: RePEc:wsi:fracta:v:32:y:2024:i:06:n:s0218348x24501068
    DOI: 10.1142/S0218348X24501068
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0218348X24501068
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0218348X24501068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:fracta:v:32:y:2024:i:06:n:s0218348x24501068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: https://www.worldscientific.com/worldscinet/fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.