IDEAS home Printed from https://ideas.repec.org/a/wsi/fracta/v32y2024i04ns0218348x24400218.html
   My bibliography  Save this article

Approximate Solution For Time Fractional Nonlinear Mkdv Equation Within Local Fractional Operators

Author

Listed:
  • JIAN-SHE SUN

    (Institute of Mathematics and Cross Science, Jiaozuo Teacher's College, Jiaozuo 454150, P. R. China2Department of Basic Science, Zhengzhou Shengda University, Xinzheng, 451150, P. R. China3School of Mathematics, China University of Mining and Technology, Xuzhou 221116, P. R. China)

Abstract

In this paper, we first propose a method, which is originated from coupling local fractional Yang–Laplace transform with the Daftardar–Gejji–Jafaris method (LFYLTDGJM). The proposed method is successfully applied to solve the local time fractional nonlinear modified Korteweg–de Vries (TFNMKDV) equation. The approximate solution presented here illustrates the efficiency and accuracy of the proposed computational technique to solve fractional nonlinear the partial differential equations involving local fractional operators.

Suggested Citation

  • Jian-She Sun, 2024. "Approximate Solution For Time Fractional Nonlinear Mkdv Equation Within Local Fractional Operators," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 32(04), pages 1-7.
  • Handle: RePEc:wsi:fracta:v:32:y:2024:i:04:n:s0218348x24400218
    DOI: 10.1142/S0218348X24400218
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0218348X24400218
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0218348X24400218?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:fracta:v:32:y:2024:i:04:n:s0218348x24400218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: https://www.worldscientific.com/worldscinet/fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.