Author
Listed:
- ZHEN LIU
(College of Safety and Environmental Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Huangdao District, Qingdao 266590, P. R. China2State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, P. R. China)
- ZHENG LI
(College of Safety and Environmental Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Huangdao District, Qingdao 266590, P. R. China2State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, P. R. China)
- HE YANG
(College of Safety and Environmental Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Huangdao District, Qingdao 266590, P. R. China2State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, P. R. China)
- JING HAN
(College of Safety and Environmental Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Huangdao District, Qingdao 266590, P. R. China2State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, P. R. China)
- MUYAO ZHU
(College of Safety and Environmental Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Huangdao District, Qingdao 266590, P. R. China2State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, P. R. China)
- SHUAI DONG
(College of Safety and Environmental Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Huangdao District, Qingdao 266590, P. R. China2State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, P. R. China)
- ZEHAN YU
(College of Safety and Environmental Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Huangdao District, Qingdao 266590, P. R. China2State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, P. R. China)
Abstract
The fracture network structure of coal is very complex, and it has always been a hot issue to characterize the fracture network structure of coal by using a tree-like branching network. In this paper, a new rough fracture permeability model of water injection coal based on a damaged tree-like branching network is proposed. In this model, fractal theory and sine wave model are used to characterize the rough characteristics of fracture structure. In addition, the applicability of the model is verified by the self-developed experimental system, and the sensitivity analysis and weight analysis of the influencing factors in the model are carried out. The results show that the factors affecting the permeability of the established permeability mathematical model are mainly the amplitude factors of sinusoidal fluctuation, length ratio, maximum branch series, number of damaged fractures, opening ratio, opening fractal dimension and initial fracture length. Among them, the sinusoidal fluctuation amplitude factor has the greatest influence on the permeability and the other two are inversely proportional. Therefore, with pulsating water injection, the frequency of changes in the water pressure was altered to improve the water injection efficiency in coal fractures with sinusoidal distribution to increase permeability. The research results provide a theoretical basis for further improving the theoretical models for seepage in porous media and fluid flow analysis of damaged tree-like branching networks.
Suggested Citation
Zhen Liu & Zheng Li & He Yang & Jing Han & Muyao Zhu & Shuai Dong & Zehan Yu, 2024.
"A New Rough Fracture Permeability Model Of Coal With Injected Water Based On Damaged Tree-Like Branching Network,"
FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 32(03), pages 1-20.
Handle:
RePEc:wsi:fracta:v:32:y:2024:i:03:n:s0218348x24500579
DOI: 10.1142/S0218348X24500579
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:fracta:v:32:y:2024:i:03:n:s0218348x24500579. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: https://www.worldscientific.com/worldscinet/fractals .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.