IDEAS home Printed from https://ideas.repec.org/a/wsi/fracta/v31y2023i09ns0218348x23501207.html
   My bibliography  Save this article

On The Generalized Variational Principle Of The Fractal Gardner Equation

Author

Listed:
  • KANG-JIA WANG

    (School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454003, P. R. China)

Abstract

The fractal calculus has gained more widespread attention in the last years. The fractal variational principle plays a major role in the fractal travelling wave theory of the fractal PDEs. This paper develops the fractal generalized variational principle (GVP) of the fractal Gardner equation by virtue of the Semi-inverse method (SIM) for the first time. On the other hand, we also discuss and verify the fractal GVP via the fractal two-scale transform (FTST) from another dimension field. The extracted fractal GVP shows the conservation laws through the energy form in the fractal space, and can be manipulated to explore the fractal solitary wave properties.

Suggested Citation

  • Kang-Jia Wang, 2023. "On The Generalized Variational Principle Of The Fractal Gardner Equation," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 31(09), pages 1-6.
  • Handle: RePEc:wsi:fracta:v:31:y:2023:i:09:n:s0218348x23501207
    DOI: 10.1142/S0218348X23501207
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0218348X23501207
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0218348X23501207?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:fracta:v:31:y:2023:i:09:n:s0218348x23501207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: https://www.worldscientific.com/worldscinet/fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.