IDEAS home Printed from https://ideas.repec.org/a/wsi/fracta/v31y2023i09ns0218348x23501001.html
   My bibliography  Save this article

Fermat Eccentric Distance Sum Of Extended Vicsek Networks

Author

Listed:
  • WENJIE WANG

    (School of Mathematical Sciences, Beihang University, Beijing 10083, P. R. China)

  • XIANGYU LIANG

    (School of Mathematical Sciences, Beihang University, Beijing 10083, P. R. China)

  • CHENG ZENG

    (��School of Mathematics and Information Science, Shandong Technology and Business University, Yantai, Shandong Province 264003, P. R. China)

  • YUMEI XUE

    (School of Mathematical Sciences, Beihang University, Beijing 10083, P. R. China)

  • LULU PENG

    (School of Mathematical Sciences, Beihang University, Beijing 10083, P. R. China)

Abstract

In this paper, we study Vicsek polygons and extended Vicsek networks, which are an extension of Vicsek fractal. Our research indices are some Fermat-type indices, including the Fermat eccentricity and the Fermat eccentric distance sum. Fermat-type indices are novel graph invariants with vast potential in research on structure–activity and quantitative structure–property. By the approach of finite pattern, we solve some integrals to gain their asymptotic formulas on Fermat eccentricity and Fermat eccentric distance sum.

Suggested Citation

  • Wenjie Wang & Xiangyu Liang & Cheng Zeng & Yumei Xue & Lulu Peng, 2023. "Fermat Eccentric Distance Sum Of Extended Vicsek Networks," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 31(09), pages 1-10.
  • Handle: RePEc:wsi:fracta:v:31:y:2023:i:09:n:s0218348x23501001
    DOI: 10.1142/S0218348X23501001
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0218348X23501001
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0218348X23501001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:fracta:v:31:y:2023:i:09:n:s0218348x23501001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: https://www.worldscientific.com/worldscinet/fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.