IDEAS home Printed from https://ideas.repec.org/a/wsi/fracta/v31y2023i03ns0218348x23500305.html
   My bibliography  Save this article

Stability/Instability Maps Of The Neutron Point Kinetic Model With Conformable And Caputo Derivatives

Author

Listed:
  • F. A. GODÃ NEZ

    (Instituto de Ingeniería, Coordinación de Sistemas Mecánicos, Energéticos y de Transporte, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, México†Unidad de Investigación y Tecnología Aplicadas, Universidad Nacional Autónoma de México, Vía de la Innovación No. 410, Autopista Monterrey-Aeropuerto, km. 10 PIIT, Apodaca 66629, Nuevo León, México)

  • G. FERNÃ NDEZ-ANAYA

    (��Departamento de Física y Matemáticas, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de Reforma 880, Lomas de Santa Fe 01219, Ciudad de México, México)

  • S. QUEZADA-GARCÃ A

    (�Departamento de Sistemas Energéticos, Facultad de Ingeniería, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, México)

  • L. A. QUEZADA-TÉLLEZ

    (�Escuela Superior de Apan, UAEH, Carretera Apan-Calpulalpan km. 8, Colonia Chimalpa Tlalayote, Apan, Hidalgo, C. P. 43900, México)

  • M. A. POLO-LABARRIOS

    (�Departamento de Sistemas Energéticos, Facultad de Ingeniería, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, México∥à rea de Ingeniería en Recursos Energéticos, Universidad Autónoma Metropolitana-Iztapalapa, Cd. Mexico 09340, Mexico)

Abstract

Behavior analysis of the neutron point kinetic model with Caputo and conformable derivatives (Khalil and Almeida operators) was performed. Hence, boundary thresholds that delimit the stability/instability zones within the anomalous diffusion exponent-reactivity parameter space were found. Stability criteria are established to limit the region of the values of the anomalous diffusion coefficient and reactivity parameters with which the oscillatory behavior of the neutron density does not exceed a value greater than 30% with respect to the value of the classical model. The parameter space map corresponding to the model with Caputo derivative shows a larger stability behavior zone than that obtained with the Khalil derivative defined in terms of a linear kernel. In a more general sense, the Almeida operator allows one to freely define the kernel function. A kernel of exponential type produces instabilities of different nature (significant increase in neutron density followed by a series of decreasing oscillations few moments after the start-up, or a rapid growth in neutron density resembling a Gaussian pulse appearing seconds after the start-up), as well as stability/instability zones of different shapes and sizes as the parameters in the kernel vary. Interestingly, it was possible to reduce the instability behavior zone with the exponential kernel and approximate its size with that of the zone predicted with the Caputo derivative.

Suggested Citation

  • F. A. Godã Nez & G. Fernã Ndez-Anaya & S. Quezada-Garcã A & L. A. Quezada-Tã‰Llez & M. A. Polo-Labarrios, 2023. "Stability/Instability Maps Of The Neutron Point Kinetic Model With Conformable And Caputo Derivatives," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 31(03), pages 1-17.
  • Handle: RePEc:wsi:fracta:v:31:y:2023:i:03:n:s0218348x23500305
    DOI: 10.1142/S0218348X23500305
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0218348X23500305
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0218348X23500305?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:fracta:v:31:y:2023:i:03:n:s0218348x23500305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: https://www.worldscientific.com/worldscinet/fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.