IDEAS home Printed from https://ideas.repec.org/a/wsi/fracta/v30y2022i10ns0218348x22401971.html
   My bibliography  Save this article

Nonexistence Results For A Class Of Nonlinear Fractional Differential Inequalities Involving Erdã‰Lyi–Kober Fractional Derivatives

Author

Listed:
  • IBTEHAL ALAZMAN

    (Department of Mathematics, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11566, Saudi Arabia)

  • MOHAMED JLELI

    (��Department of Mathematics, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia)

  • BESSEM SAMET

    (��Department of Mathematics, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia)

Abstract

A class of Erdélyi–Kober fractional differential inequalities with a polynomial nonlinearity and a singular potential function is investigated in this paper. By mean of the test function method, we establish sufficient conditions for the nonexistence of global weak solutions. Some examples are provided to illustrate our obtained results. To the best of our knowledge, the issue of nonexistence of global solutions for fractional differential equations or inequalities, involving Erdélyi–Kober fractional derivatives, was never addressed in the literature.

Suggested Citation

  • Ibtehal Alazman & Mohamed Jleli & Bessem Samet, 2022. "Nonexistence Results For A Class Of Nonlinear Fractional Differential Inequalities Involving Erdã‰Lyi–Kober Fractional Derivatives," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(10), pages 1-8, December.
  • Handle: RePEc:wsi:fracta:v:30:y:2022:i:10:n:s0218348x22401971
    DOI: 10.1142/S0218348X22401971
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0218348X22401971
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0218348X22401971?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:fracta:v:30:y:2022:i:10:n:s0218348x22401971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: https://www.worldscientific.com/worldscinet/fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.