Author
Listed:
- WENHUI SONG
(Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, P. R. China†School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China)
- MAŠA PRODANOVIĆ
(��Hildebrand Department of Petroleum and Geosystems Engineering, The University of Texas at Austin, TX 78712, USA)
- JUN YAO
(Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, P. R. China†School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China)
- KAI ZHANG
(Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, P. R. China†School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China)
- QIQI WANG
(�Jackson School of Geosciences, The University of Texas at Austin, TX 78712, USA)
Abstract
Archie’s law is commonly applied to predict electrical conductivity of rock by correlating the homogeneous, water-wet reservoir rock conductivity with its porosity and saturation. However, Archie’s law is an empirical model consisting of unknown cementation exponent and saturation exponent. In this study, we propose analytical electrical conductivity models for both single-phase and multi-phase porous media based on the fractal theory. The established electrical conductivity model for fractal porous media saturated with a single fluid phase is the function of several factors including pore fluid electrical conductivity, porosity, pore fractal dimension and tortuosity fractal dimension. The established electrical conductivity model for fractal porous media containing multiple fluid phases is the function of wetting fluid saturation, contact angle and pore shape apart from the factors for saturated fractal porous media condition. The calculated formation factor based on the proposed model correlates well with the sandstone experimental data.
Suggested Citation
Wenhui Song & Maå A Prodanoviä† & Jun Yao & Kai Zhang & Qiqi Wang, 2022.
"Analytical Electrical Conductivity Models For Single-Phase And Multi-Phase Fractal Porous Media,"
FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(03), pages 1-10, May.
Handle:
RePEc:wsi:fracta:v:30:y:2022:i:03:n:s0218348x22500608
DOI: 10.1142/S0218348X22500608
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:fracta:v:30:y:2022:i:03:n:s0218348x22500608. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: https://www.worldscientific.com/worldscinet/fractals .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.