IDEAS home Printed from https://ideas.repec.org/a/wsi/fracta/v29y2021i05ns0218348x21400132.html
   My bibliography  Save this article

Complex Fractional-Order Hiv Diffusion Model Based On Amplitude Equations With Turing Patterns And Turing Instability

Author

Listed:
  • NAVEED IQBAL

    (Department of Mathematics, College of Science, University of Ha’il, Ha’il 81481, Saudi Arabia)

  • YELIZ KARACA

    (University of Massachusetts Medical School, Worcester, MA 01655, USA)

Abstract

A weakly nonlinear analysis provides a system constituting amplitude equations and its related analysis is capable of predicting parameter regimes with different patterns expected to co-exist in dynamical circumstances that exhibit complex fractional-order system characteristics. The Turing mechanism of pattern formation as a result of diffusion-induced instability of the homogeneous steady state is concerned with unpredictable conditions. The Turing instability caused by fractional diffusion in a Human Immunodeficiency Virus model has been addressed in this study. It is important that the effect of the Human Immunodeficiency Virus to the immune system can be modeled by the interaction of uninfected cells, unhealthy cells, virus particles and antigen-specific. Initially, all potential equilibrium points are defined and the stability of the interior equilibrium point is then evaluated using the Routh–Hurwitz criteria. The conditions for Turing instability are obtained by local equilibrium points with stability analysis. In the neighborhood of the Turing bifurcation point, weakly nonlinear analysis is employed to deduce the amplitude equations. After applying amplitude equations, it is observed that this system has a very rich dynamical behavior. The constraints for the formation of the patterns like a hexagon, spot, mixed and stripe patterns are identified for the amplitude equations by dynamic analysis. Furthermore, by using the numerical simulations, the theoretical results are verified. Within this framework, this study through the dynamical behavior of the complex system perspective and bifurcation point based on the viral death rate can provide the basis for several researchers working on Human Immunodeficiency Virus model through various aspects. Accordingly, the Turing bifurcation point and weakly nonlinear analysis employed within the complex fractional-order dynamics addressed herein are highly relevant experimentally since the related effects can be studied and applied concerning different mathematical, physical, engineering and biological models.

Suggested Citation

  • Naveed Iqbal & Yeliz Karaca, 2021. "Complex Fractional-Order Hiv Diffusion Model Based On Amplitude Equations With Turing Patterns And Turing Instability," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 29(05), pages 1-16, August.
  • Handle: RePEc:wsi:fracta:v:29:y:2021:i:05:n:s0218348x21400132
    DOI: 10.1142/S0218348X21400132
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0218348X21400132
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0218348X21400132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yasmin, Humaira, 2022. "Effect of vaccination on non-integer dynamics of pneumococcal pneumonia infection," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    2. Yangyang Shao & Yan Meng & Xinyue Xu, 2022. "Turing Instability and Spatiotemporal Pattern Formation Induced by Nonlinear Reaction Cross-Diffusion in a Predator–Prey System with Allee Effect," Mathematics, MDPI, vol. 10(9), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:fracta:v:29:y:2021:i:05:n:s0218348x21400132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: https://www.worldscientific.com/worldscinet/fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.