IDEAS home Printed from https://ideas.repec.org/a/wsi/fracta/v29y2021i03ns0218348x21500511.html
   My bibliography  Save this article

Super Coalescence Hidden-Variable Fractal Interpolation Functions

Author

Listed:
  • SRIJANANI ANURAG PRASAD

    (Department of Mathematics and Statistics, Indian Institute of Technology, Tirupati, India)

Abstract

In this paper, a new notion of super coalescence hidden-variable fractal interpolation function (SCHFIF) is introduced. The construction of SCHFIF involves choosing an IFS from a pool of several non-diagonal IFS at each level of iteration. Further, the integral of a SCHFIF is studied and shown to be a SCHFIF passing through a different set of interpolation data.

Suggested Citation

  • Srijanani Anurag Prasad, 2021. "Super Coalescence Hidden-Variable Fractal Interpolation Functions," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 29(03), pages 1-9, May.
  • Handle: RePEc:wsi:fracta:v:29:y:2021:i:03:n:s0218348x21500511
    DOI: 10.1142/S0218348X21500511
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0218348X21500511
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0218348X21500511?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prasad, S.A. & Verma, S., 2023. "Fractal interpolation function on products of the SierpiƄski gaskets," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    2. Liu, Chiao-Wen & Luor, Dah-Chin, 2023. "Applications of fractal interpolants in kernel regression estimations," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    3. Ri, Mi-Gyong & Yun, Chol-Hui, 2022. "Riemann-Liouville fractional derivatives of hidden variable recurrent fractal interpolation functions with function scaling factors and box dimension," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:fracta:v:29:y:2021:i:03:n:s0218348x21500511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: https://www.worldscientific.com/worldscinet/fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.