IDEAS home Printed from https://ideas.repec.org/a/wsi/cjuesx/v05y2017i04ns2345748117500269.html
   My bibliography  Save this article

Economic Assessment and Policy Analysis on Wind Energy Development in China

Author

Listed:
  • Changyi LIU

    (Global Energy Interconnection Development and Cooperation Organization, No. 8, Xuanwumennei Street, Xicheng District, Beijing 100031, China)

  • Rong ZHU

    (National Climate Center, No. 46, Zhongguancun Nandajie, Haidian District, Beijing 100081, China)

  • Yang WANG

    (National Climate Center, No. 46, Zhongguancun Nandajie, Haidian District, Beijing 100081, China)

Abstract

Considering rapid development and emerging new challenges of China's wind energy development, this paper summarizes and analyzes five critical problems. First, according to an economic potential assessment, if the feed-in tariff is set 0.60 Yuan/kWh, the economic potential of wind electricity of China will reach 6.63PWh, it could meet as much as 2/3 of total power demand by 2030, thus the targeted wind power proportion in future high renewable energy penetration can be achieved. Second, wind energy is abundant but little consumed in Northwest, Northeast and North China while it is insufficient in South and East of China, where grid-connection condition is well. Due to this reverse distribution pattern of wind power endowment and consumption in China, grid-connection transmission must be strengthened in the future, particularly the West–East and North–South power transmission projects must be pushed forward. Third, to address the issue of increasing wind energy curtailment in Northeast, Northwest and North China, stimulating local consumption of wind power by multiple ways is a possible solution in the short term, however, in the medium and long run, it is necessary to accelerate the construction of Ultra-High Voltage power grid in order to expand power transmission to other provinces and regions. Fourth, a new electricity market mechanism should be established as the fundamental measure of promoting new energy development, while green certificate trading market and carbon trading market will form the basis for such market mechanism in the long run. Fifth, though wind power development can bring multiple benefits to economy, employment, and environment, large-scale wind power development will, to some extent, affect local and regional climate. As global warming continues, the wind power resource distribution of China and the world may experience significant changes.

Suggested Citation

  • Changyi LIU & Rong ZHU & Yang WANG, 2017. "Economic Assessment and Policy Analysis on Wind Energy Development in China," Chinese Journal of Urban and Environmental Studies (CJUES), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 1-17, December.
  • Handle: RePEc:wsi:cjuesx:v:05:y:2017:i:04:n:s2345748117500269
    DOI: 10.1142/S2345748117500269
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S2345748117500269
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S2345748117500269?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xi Lu & Michael B. McElroy & Wei Peng & Shiyang Liu & Chris P. Nielsen & Haikun Wang, 2016. "Challenges faced by China compared with the US in developing wind power," Nature Energy, Nature, vol. 1(6), pages 1-6, June.
    2. He, Gang & Kammen, Daniel M., 2014. "Where, when and how much wind is available? A provincial-scale wind resource assessment for China," Energy Policy, Elsevier, vol. 74(C), pages 116-122.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hayashi, Daisuke & Huenteler, Joern & Lewis, Joanna I., 2018. "Gone with the wind: A learning curve analysis of China's wind power industry," Energy Policy, Elsevier, vol. 120(C), pages 38-51.
    2. Liu, Laibao & Wang, Zheng & Wang, Yang & Wang, Jun & Chang, Rui & He, Gang & Tang, Wenjun & Gao, Ziqi & Li, Jiangtao & Liu, Changyi & Zhao, Lin & Qin, Dahe & Li, Shuangcheng, 2020. "Optimizing wind/solar combinations at finer scales to mitigate renewable energy variability in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    3. Liao, Shiwu & Yao, Wei & Han, Xingning & Wen, Jinyu & Cheng, Shijie, 2017. "Chronological operation simulation framework for regional power system under high penetration of renewable energy using meteorological data," Applied Energy, Elsevier, vol. 203(C), pages 816-828.
    4. Liu, Changyi & Wang, Yang & Zhu, Rong, 2017. "Assessment of the economic potential of China's onshore wind electricity," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 33-39.
    5. Dong, Changgui & Qi, Ye & Dong, Wenjuan & Lu, Xi & Liu, Tianle & Qian, Shuai, 2018. "Decomposing driving factors for wind curtailment under economic new normal in China," Applied Energy, Elsevier, vol. 217(C), pages 178-188.
    6. Song, Feng & Bi, De & Wei, Chu, 2019. "Market segmentation and wind curtailment: An empirical analysis," Energy Policy, Elsevier, vol. 132(C), pages 831-838.
    7. Zhang, Xiaodong & Patino-Echeverri, Dalia & Li, Mingquan & Wu, Libo, 2022. "A review of publicly available data sources for models to study renewables integration in China's power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. He, Gang & Zhang, Hongliang & Xu, Yuan & Lu, Xi, 2017. "China’s clean power transition: Current status and future prospect," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 3-10.
    9. Fan, Zhixin & Zhu, Caichao, 2019. "The optimization and the application for the wind turbine power-wind speed curve," Renewable Energy, Elsevier, vol. 140(C), pages 52-61.
    10. Liu, Hailiang & Andresen, Gorm Bruun & Greiner, Martin, 2018. "Cost-optimal design of a simplified highly renewable Chinese electricity network," Energy, Elsevier, vol. 147(C), pages 534-546.
    11. Tan, Qinliang & Han, Jian & Liu, Yuan, 2023. "Examining the synergistic diffusion process of carbon capture and renewable energy generation technologies under market environment: A multi-agent simulation analysis," Energy, Elsevier, vol. 282(C).
    12. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    13. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    14. Wang, Jianxiao & An, Qi & Zhao, Yue & Pan, Guangsheng & Song, Jie & Hu, Qinran & Tan, Chin-Woo, 2023. "Role of electrolytic hydrogen in smart city decarbonization in China," Applied Energy, Elsevier, vol. 336(C).
    15. Yao, Xilong & Liu, Yang & Qu, Shiyou, 2015. "When will wind energy achieve grid parity in China? – Connecting technological learning and climate finance," Applied Energy, Elsevier, vol. 160(C), pages 697-704.
    16. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Characterization of wind resource in China from a new perspective," Energy, Elsevier, vol. 167(C), pages 994-1010.
    17. Chen, Huadong & Wang, Can & Cai, Wenjia & Wang, Jianhui, 2018. "Simulating the impact of investment preference on low-carbon transition in power sector," Applied Energy, Elsevier, vol. 217(C), pages 440-455.
    18. Wang, Linyuan & Zhao, Lin & Mao, Guozhu & Zuo, Jian & Du, Huibin, 2017. "Way to accomplish low carbon development transformation: A bibliometric analysis during 1995–2014," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 57-69.
    19. Shen, Xingchi & Lyu, Shoujun, 2019. "Wind power development, government regulation structure, and vested interest groups: Analysis based on panel data of Province of China," Energy Policy, Elsevier, vol. 128(C), pages 487-494.
    20. Gosens, Jorrit, 2017. "Natural resource endowment is not a strong driver of wind or PV development," Renewable Energy, Elsevier, vol. 113(C), pages 1007-1018.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:cjuesx:v:05:y:2017:i:04:n:s2345748117500269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/cjues/cjues.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.