IDEAS home Printed from https://ideas.repec.org/a/wsi/ccexxx/v04y2013i04ns2010007813400125.html
   My bibliography  Save this article

A Multi-Model Analysis Of Post-2020 Mitigation Efforts Of Five Major Economies

Author

Listed:
  • MARIËSSE A. E. VAN SLUISVELD

    (Copernicus Institute of Sustainable Development, Utrecht University, Heidelberglaan 2, NL-3584 CS Utrecht, The Netherlands)

  • DAVID E. H. J. GERNAAT

    (Copernicus Institute of Sustainable Development, Utrecht University, Heidelberglaan 2, NL-3584 CS Utrecht, The Netherlands)

  • SHUICHI ASHINA

    (NIES National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba-City, Ibaraki 305-8506, Japan)

  • KATHERINE V. CALVIN

    (Joint Global Change Research Institute, Pacific Northwest National Laboratory and University of Maryland, USA)

  • AMIT GARG

    (IIMAHD Indian Institute of Management Ahmedabad, Vastrapur, Ahmedabad, India)

  • MORNA ISAAC

    (Copernicus Institute of Sustainable Development, Utrecht University, Heidelberglaan 2, NL-3584 CS Utrecht, The Netherlands)

  • PAUL L. LUCAS

    (PBL Netherlands Environment Assessment Agency, PO Box 303, 3720 BA Bilthoven, The Netherlands)

  • IOANNA MOURATIADOU

    (Potsdam Institute for Climate Impact Research (PIK), PO Box 60 12 03, 14412 Potsdam, Germany)

  • SANDER A. C. OTTO

    (Copernicus Institute of Sustainable Development, Utrecht University, Heidelberglaan 2, NL-3584 CS Utrecht, The Netherlands)

  • SHILPA RAO

    (International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg, Austria)

  • PRIYADARSHI R. SHUKLA

    (IIMAHD Indian Institute of Management Ahmedabad, Vastrapur, Ahmedabad, India)

  • JASPER VAN VLIET

    (PBL Netherlands Environment Assessment Agency, PO Box 303, 3720 BA Bilthoven, The Netherlands)

  • DETLEF P. VAN VUUREN

    (Copernicus Institute of Sustainable Development, Utrecht University, Heidelberglaan 2, NL-3584 CS Utrecht, The Netherlands;
    PBL Netherlands Environment Assessment Agency, PO Box 303, 3720 BA Bilthoven, The Netherlands)

Abstract

This paper looks into the regional mitigation strategies of five major economies (China, EU, India, Japan, and USA) in the context of the 2°C target, using a multi-model comparison. In order to stay in line with the 2°C target, a tripling or quadrupling of mitigation ambitions is required in all regions by 2050, employing vigorous decarbonization of the energy supply system and achieving negative emissions during the second half of the century. In all regions looked at, decarbonization of energy supply (and in particular power generation) is more important than reducing energy demand. Some differences in abatement strategies across the regions are projected: In India and the USA the emphasis is on prolonging fossil fuel use by coupling conventional technologies with carbon storage, whereas the other main strategy depicts a shift to carbon-neutral technologies with mostly renewables (China, EU) or nuclear power (Japan). Regions with access to large amounts of biomass, such as the USA, China, and the EU, can make a trade-off between energy related emissions and land related emissions, as the use of bioenergy can lead to a net increase in land use emissions. After supply-side changes, the most important abatement strategy focuses on end-use efficiency improvements, leading to considerable emission reductions in both the industry and transport sectors across all regions. Abatement strategies for non-CO2emissions and land use emissions are found to have a smaller potential. Inherent model, as well as collective, biases have been observed affecting the regional response strategy or the available reduction potential in specific (end-use) sectors.

Suggested Citation

  • Mariësse A. E. Van Sluisveld & David E. H. J. Gernaat & Shuichi Ashina & Katherine V. Calvin & Amit Garg & Morna Isaac & Paul L. Lucas & Ioanna Mouratiadou & Sander A. C. Otto & Shilpa Rao & Priyadars, 2013. "A Multi-Model Analysis Of Post-2020 Mitigation Efforts Of Five Major Economies," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-24.
  • Handle: RePEc:wsi:ccexxx:v:04:y:2013:i:04:n:s2010007813400125
    DOI: 10.1142/S2010007813400125
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S2010007813400125
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S2010007813400125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hong, Lixuan & Zhou, Nan & Fridley, David & Raczkowski, Chris, 2013. "Assessment of China's renewable energy contribution during the 12th Five Year Plan," Energy Policy, Elsevier, vol. 62(C), pages 1533-1543.
    2. Valentina Bosetti & Carlo Carraro & Massimo Tavoni, 2008. "Delayed Participation of Developing Countries to Climate Agreements: Should Action in the EU and US be Postponed?," Working Papers 2008.70, Fondazione Eni Enrico Mattei.
    3. Oecd, 2009. "Climate Change and Africa," OECD Journal: General Papers, OECD Publishing, vol. 2009(1), pages 5-35.
    4. Christa Clapp & Katia Karousakis & Barbara Buchner & Jean Château, 2009. "National and Sectoral GHG Mitigation Potential: A Comparison Across Models," OECD/IEA Climate Change Expert Group Papers 2009/7, OECD Publishing.
    5. Daniel Johansson & Paul Lucas & Matthias Weitzel & Erik Ahlgren & A. Bazaz & Wenying Chen & Michel Elzen & Joydeep Ghosh & Maria Grahn & Qiao-Mei Liang & Sonja Peterson & Basanta Pradhan & Bas Ruijven, 2015. "Multi-model comparison of the economic and energy implications for China and India in an international climate regime," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(8), pages 1335-1359, December.
    6. -, 2008. "Women and Water: Climate Change in the Caribbean," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38435, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mathy, Sandrine & Menanteau, Philippe & Criqui, Patrick, 2018. "After the Paris Agreement: Measuring the Global Decarbonization Wedges From National Energy Scenarios," Ecological Economics, Elsevier, vol. 150(C), pages 273-289.
    2. Zhi-Fu Mi & Yi-Ming Wei & Chen-Qi He & Hua-Nan Li & Xiao-Chen Yuan & Hua Liao, 2017. "Regional efforts to mitigate climate change in China: a multi-criteria assessment approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(1), pages 45-66, January.
    3. Iris Staub-Kaminski & Anne Zimmer & Michael Jakob & Robert Marschinski, 2014. "Climate Policy In Practice: A Typology Of Obstacles And Implications For Integrated Assessment Modeling," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 1-30.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Louise Ella Desquith & Olivier Renault, 2021. "Gestion du risque climatique : les déterminants des stratégies d’adaptation des agriculteurs en Afrique Subsaharienne," EconomiX Working Papers 2021-17, University of Paris Nanterre, EconomiX.
    2. Basurto, Saul, 2016. "A Mexican Ricardian analysis: land rental prices or net revenues?," 90th Annual Conference, April 4-6, 2016, Warwick University, Coventry, UK 236362, Agricultural Economics Society.
    3. Giuseppe Maggio & Marina Mastrorillo & Nicholas J. Sitko, 2022. "Adapting to High Temperatures: Effect of Farm Practices and Their Adoption Duration on Total Value of Crop Production in Uganda," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 385-403, January.
    4. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    5. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    6. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    7. Lucia de Strasser, 2017. "Calling for Nexus Thinking in Africa’s Energy Planning," ESP: Energy Scenarios and Policy 263161, Fondazione Eni Enrico Mattei (FEEM).
    8. Samuel Asante Gyamerah & Philip Ngare & Dennis Ikpe, 2018. "Regime-Switching Temperature Dynamics Model for Weather Derivatives," International Journal of Stochastic Analysis, Hindawi, vol. 2018, pages 1-15, July.
    9. Fernando M. Aragón & Francisco Oteiza & Juan Pablo Rud, 2018. "Climate change and agriculture: farmer adaptation to extreme heat," IFS Working Papers W18/06, Institute for Fiscal Studies.
    10. Cook, Aaron M. & Ricker-Gilbert, Jacob E. & Sesmero, Juan P., 2013. "How do African households adapt to climate change? Evidence from Malawi," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150507, Agricultural and Applied Economics Association.
    11. Bossa, A.Y. & Diekkrüger, B. & Giertz, S. & Steup, G. & Sintondji, L.O. & Agbossou, E.K. & Hiepe, C., 2012. "Modeling the effects of crop patterns and management scenarios on N and P loads to surface water and groundwater in a semi-humid catchment (West Africa)," Agricultural Water Management, Elsevier, vol. 115(C), pages 20-37.
    12. Jianhong Mu & Bruce McCarl & Anne Wein, 2013. "Adaptation to climate change: changes in farmland use and stocking rate in the U.S," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(6), pages 713-730, August.
    13. F. Jorge Bornemann & David P. Rowell & Barbara Evans & Dan J. Lapworth & Kamazima Lwiza & David M.J. Macdonald & John H. Marsham & Kindie Tesfaye & Matthew J. Ascott & Celia Way, 2019. "Future changes and uncertainty in decision-relevant measures of East African climate," Climatic Change, Springer, vol. 156(3), pages 365-384, October.
    14. Kondwani Msowoya & Kaveh Madani & Rahman Davtalab & Ali Mirchi & Jay R. Lund, 2016. "Climate Change Impacts on Maize Production in the Warm Heart of Africa," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5299-5312, November.
    15. Maria Waldinger, 2015. "The effects of climate change on internal and international migration: implications for developing countries," GRI Working Papers 192, Grantham Research Institute on Climate Change and the Environment.
    16. Jolanta Kryspin-Watson & John Pollner & Sonja Nieuwejaar, 2008. "Climate Change Adaptation in Europe and Central Asia," World Bank Publications - Reports 25985, The World Bank Group.
    17. Nyadzi, Emmanuel, 2016. "Climate Variability Since 1970 and Farmers’ Observations in Northern Ghana," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 5(2).
    18. Chang, Yen-Chiang & Wang, Nannan, 2010. "Environmental regulations and emissions trading in China," Energy Policy, Elsevier, vol. 38(7), pages 3356-3364, July.
    19. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    20. Basanta Paudel & Yili Zhang & Jianzhong Yan & Raju Rai & Lanhui Li & Xue Wu & Prem Sagar Chapagain & Narendra Raj Khanal, 2020. "Farmers’ understanding of climate change in Nepal Himalayas: important determinants and implications for developing adaptation strategies," Climatic Change, Springer, vol. 158(3), pages 485-502, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ccexxx:v:04:y:2013:i:04:n:s2010007813400125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/cce/cce.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.