IDEAS home Printed from https://ideas.repec.org/a/wsi/apjorx/v36y2019i04ns0217595919500210.html
   My bibliography  Save this article

Lagrange Multiplier Rules for Weakly Minimal Solutions of Compact-Valued Set Optimization Problems

Author

Listed:
  • Tijani Amahroq

    (Cadi Ayyad University, Faculty of Sciences and Techniques, B.P. 549, Marrakech, Morocco)

  • Abdessamad Oussarhan

    (Cadi Ayyad University, Faculty of Sciences and Techniques, B.P. 549, Marrakech, Morocco)

Abstract

Optimality conditions are established in terms of Lagrange–Fritz–John multipliers as well as Lagrange–Kuhn–Tucker multipliers for set optimization problems (without any convexity assumption) by using new scalarization techniques. Additionally, we indicate how these results may be applied to some particular weak vector equilibrium problems.

Suggested Citation

  • Tijani Amahroq & Abdessamad Oussarhan, 2019. "Lagrange Multiplier Rules for Weakly Minimal Solutions of Compact-Valued Set Optimization Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(04), pages 1-22, August.
  • Handle: RePEc:wsi:apjorx:v:36:y:2019:i:04:n:s0217595919500210
    DOI: 10.1142/S0217595919500210
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0217595919500210
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0217595919500210?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frank Heyde & Andreas Löhne & Christiane Tammer, 2009. "Set-valued duality theory for multiple objective linear programs and application to mathematical finance," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(1), pages 159-179, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gemayqzel Bouza & Ernest Quintana & Christiane Tammer, 2021. "A Steepest Descent Method for Set Optimization Problems with Set-Valued Mappings of Finite Cardinality," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 711-743, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis Rodríguez-Marín & Miguel Sama, 2013. "Scalar Lagrange Multiplier Rules for Set-Valued Problems in Infinite-Dimensional Spaces," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 683-700, March.
    2. B. Jiménez & V. Novo & A. Vílchez, 2020. "Characterization of set relations through extensions of the oriented distance," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(1), pages 89-115, February.
    3. N. Mahdavi-Amiri & F. Salehi Sadaghiani, 2017. "Strictly feasible solutions and strict complementarity in multiple objective linear optimization," 4OR, Springer, vol. 15(3), pages 303-326, September.
    4. Luc, Dinh The, 2011. "On duality in multiple objective linear programming," European Journal of Operational Research, Elsevier, vol. 210(2), pages 158-168, April.
    5. Andreas H Hamel & Andreas Löhne, 2020. "Choosing sets: preface to the special issue on set optimization and applications," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(1), pages 1-4, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:apjorx:v:36:y:2019:i:04:n:s0217595919500210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/apjor/apjor.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.