IDEAS home Printed from https://ideas.repec.org/a/wsi/apjorx/v27y2010i02ns0217595910002624.html
   My bibliography  Save this article

Alternative Randomization For Valuing American Options

Author

Listed:
  • TOSHIKAZU KIMURA

    (Graduate School of Economics and Business Administration, Hokkaido University, Kita 9, Nishi 7, Kita-ku, Sapporo 060-0809, Japan)

Abstract

This paper deals with randomization methods for valuing American options written on dividend-paying assets, which are based on the idea of treating the maturity date as a random variable. In the randomization method introduced by Carr in 1998, he used the Erlangian distributed random variable to develop a recursive algorithm starting from the so-called Canadian option with an exponentially distributed random maturity. The purposes of this paper are (i) to provide much simpler pricing formulas for the Canadian option; (ii) to interpret the Gaver–Stehfest method developed for inverting Laplace transforms as an alternative randomization method in the context of valuing American options; and (iii) to evaluate the performance of the Gaver–Stehfest method in details with theoretical and numerical views. Numerical experiments indicate that the Gaver–Stehfest method works well to generate accurate approximations for the early exercise boundary as well as the option value.

Suggested Citation

  • Toshikazu Kimura, 2010. "Alternative Randomization For Valuing American Options," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 27(02), pages 167-187.
  • Handle: RePEc:wsi:apjorx:v:27:y:2010:i:02:n:s0217595910002624
    DOI: 10.1142/S0217595910002624
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0217595910002624
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0217595910002624?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Carr, 1996. "Valuing Finite-Lived Options as Perpetual," Finance 9607002, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Walter Farkas & Ludovic Mathys & Nikola Vasiljevi'c, 2020. "Intra-Horizon Expected Shortfall and Risk Structure in Models with Jumps," Papers 2002.04675, arXiv.org, revised Jan 2021.
    2. Yuanda Chen & Zailei Cheng & Haixu Wang, 2023. "Option Pricing for the Variance Gamma Model: A New Perspective," Papers 2306.10659, arXiv.org.
    3. Leippold, Markus & Vasiljević, Nikola, 2017. "Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 78-94.
    4. Walter Farkas & Ludovic Mathys & Nikola Vasiljević, 2021. "Intra‐Horizon expected shortfall and risk structure in models with jumps," Mathematical Finance, Wiley Blackwell, vol. 31(2), pages 772-823, April.
    5. Walter Farkas & Ludovic Mathys, 2020. "Geometric Step Options with Jumps. Parity Relations, PIDEs, and Semi-Analytical Pricing," Papers 2002.09911, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristina Viegas & José Azevedo-Pereira, 2020. "A Quasi-Closed-Form Solution for the Valuation of American Put Options," IJFS, MDPI, vol. 8(4), pages 1-16, October.
    2. Leisen, Dietmar P. J., 1999. "The random-time binomial model," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1355-1386, September.
    3. Mitya Boyarchenko & Sergei Levendorskiĭ, 2009. "Prices And Sensitivities Of Barrier And First-Touch Digital Options In Lévy-Driven Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(08), pages 1125-1170.
    4. Cristina Viegas & Jos� Azevedo-Pereira, 2012. "Mortgage valuation: a quasi-closed-form solution," Quantitative Finance, Taylor & Francis Journals, vol. 12(7), pages 993-1001, May.
    5. Dietmar P.J. Leisen, 1997. "The Random-Time Binomial Model," Finance 9711005, University Library of Munich, Germany, revised 29 Nov 1998.
    6. Zhongkai Liu & Tao Pang, 2016. "An efficient grid lattice algorithm for pricing American-style options," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 5(1), pages 36-55.
    7. Chockalingam, Arun & Muthuraman, Kumar, 2015. "An approximate moving boundary method for American option pricing," European Journal of Operational Research, Elsevier, vol. 240(2), pages 431-438.
    8. Riccardo Fazio, 2015. "A Posteriori Error Estimator for a Front-Fixing Finite Difference Scheme for American Options," Papers 1504.04594, arXiv.org.
    9. Leunglung Chan & Song-Ping Zhu, 2021. "An Analytic Approach for Pricing American Options with Regime Switching," JRFM, MDPI, vol. 14(5), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:apjorx:v:27:y:2010:i:02:n:s0217595910002624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/apjor/apjor.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.