IDEAS home Printed from https://ideas.repec.org/a/wsi/acsxxx/v26y2023i06ns0219525923400052.html
   My bibliography  Save this article

Routing Strategies For Suppressing Traffic-Driven Epidemic Spreading In Multiplex Networks

Author

Listed:
  • JINLONG MA

    (School of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, P. R. China2Hebei Technology Innovation Center of Intelligent IoT, Shijiazhuang 050018, P. R. China)

  • TINGTING XIANG

    (School of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, P. R. China2Hebei Technology Innovation Center of Intelligent IoT, Shijiazhuang 050018, P. R. China)

  • MINGWEI CAI

    (School of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, P. R. China2Hebei Technology Innovation Center of Intelligent IoT, Shijiazhuang 050018, P. R. China)

Abstract

Multiplex networks have proven to be valuable tools for modeling and analyzing real complex system. Extensive work has been done on the traffic dynamics on multiplex networks, but there remains a lack of sufficient attention towards studying routing strategies for the purpose of suppressing epidemic spreading. In this paper, the impact of global awareness routing (GAR), improved global awareness routing (IGAR), and improved active routing (IAR) strategies on traffic-driven epidemic spreading are investigated. Our findings indicate that in the case of infinite node-delivery capacity and no traffic congestion in the network, adjusting routing parameters can effectively suppress epidemic spreading. In this context, these three strategies show better abilities on the multiplex network built by WS or ER model to minimize the density of infected nodes, thus contributing to the overall inhibition of the epidemic spread. However, in the multiplex network constructed by BA model, GAR strategy has a promoting effect on epidemic spreading compared with the shortest routing strategy. In addition, by controlling traffic flow, limiting node delivery capabilities can contain outbreaks. Our results suggest that adopting appropriate routing strategies in multiplex networks can play a proactive role in controlling epidemic spreading. This is crucial for formulating effective prevention and control measures and improving public health security.

Suggested Citation

  • Jinlong Ma & Tingting Xiang & Mingwei Cai, 2023. "Routing Strategies For Suppressing Traffic-Driven Epidemic Spreading In Multiplex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 26(06), pages 1-18, September.
  • Handle: RePEc:wsi:acsxxx:v:26:y:2023:i:06:n:s0219525923400052
    DOI: 10.1142/S0219525923400052
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219525923400052
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219525923400052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:acsxxx:v:26:y:2023:i:06:n:s0219525923400052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/acs/acs.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.