IDEAS home Printed from https://ideas.repec.org/a/wly/wirecc/v10y2019i3ne576.html
   My bibliography  Save this article

Frontiers in data analytics for adaptation research: Topic modeling

Author

Listed:
  • Alexandra Lesnikowski
  • Ella Belfer
  • Emma Rodman
  • Julie Smith
  • Robbert Biesbroek
  • John D. Wilkerson
  • James D. Ford
  • Lea Berrang‐Ford

Abstract

Rapid growth over the past two decades in digitized textual information represents untapped potential for methodological innovations in the adaptation governance literature that draw on machine learning approaches already being applied in other areas of computational social sciences. This Focus Article explores the potential for text mining techniques, specifically topic modeling, to leverage this data for large‐scale analysis of the content of adaptation policy documents. We provide an overview of the assumptions and procedures that underlie the use of topic modeling, and discuss key areas in the adaptation governance literature where topic modeling could provide valuable insights. We demonstrate the diversity of potential applications for topic modeling with two examples that examine: (a) how adaptation is being talked about by political leaders in United Nations Framework Convention on Climate Change; and (b) how adaptation is being discussed by decision‐makers and public administrators in Canadian municipalities using documents collected from 25 city council archives. This article is categorized under: Vulnerability and Adaptation to Climate Change > Institutions for Adaptation

Suggested Citation

  • Alexandra Lesnikowski & Ella Belfer & Emma Rodman & Julie Smith & Robbert Biesbroek & John D. Wilkerson & James D. Ford & Lea Berrang‐Ford, 2019. "Frontiers in data analytics for adaptation research: Topic modeling," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 10(3), May.
  • Handle: RePEc:wly:wirecc:v:10:y:2019:i:3:n:e576
    DOI: 10.1002/wcc.576
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wcc.576
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wcc.576?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hansu Hwang & SeJin An & Eunchang Lee & Suhyeon Han & Cheon-hwan Lee, 2021. "Cross-Societal Analysis of Climate Change Awareness and Its Relation to SDG 13: A Knowledge Synthesis from Text Mining," Sustainability, MDPI, vol. 13(10), pages 1-21, May.
    2. Gema Hernández-Moral & Sofía Mulero-Palencia & Víctor Iván Serna-González & Carla Rodríguez-Alonso & Roberto Sanz-Jimeno & Vangelis Marinakis & Nikos Dimitropoulos & Zoi Mylona & Daniele Antonucci & H, 2021. "Big Data Value Chain: Multiple Perspectives for the Built Environment," Energies, MDPI, vol. 14(15), pages 1-21, July.
    3. Mourtgos, Scott M. & Adams, Ian T., 2019. "The rhetoric of de-policing: Evaluating open-ended survey responses from police officers with machine learning-based structural topic modeling," Journal of Criminal Justice, Elsevier, vol. 64(C), pages 1-1.
    4. Ece Kural & Lisa Maria Dellmuth & Maria-Therese Gustafsson, 2021. "International organizations and climate change adaptation: A new dataset for the social scientific study of adaptation, 1990–2017," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-18, September.
    5. Ivan Savin & Stefan Drews & Sara Maestre-Andrés & Jeroen Bergh, 2020. "Public views on carbon taxation and its fairness: a computational-linguistics analysis," Climatic Change, Springer, vol. 162(4), pages 2107-2138, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:wirecc:v:10:y:2019:i:3:n:e576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1757-7799 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.