IDEAS home Printed from https://ideas.repec.org/a/wly/syseng/v23y2020i2p177-188.html
   My bibliography  Save this article

Trade study to select best alternative for cable and pulley simulation for cranes on offshore vessels

Author

Listed:
  • Gaute Fotland
  • Cecilia Haskins
  • Terje Rølvåg

Abstract

Cranes on offshore vessels are subjected to crane dynamics, structural couplings to the vessel, and environmental influence by waves and currents. The recent trend has been to use larger cranes on smaller vessels, which makes the lifting operation more complex and potentially dangerous. The use of digital twins (DTs) is emerging as one way to enable safer operations, real‐time simulation, and maintenance prediction. On offshore vessels, a DT can monitor the lifting operation to create a safer work environment. The SPADE (stakeholders, problem formulation, alternatives, decision making, and evaluation) model has been used as a framework toward the creation of a DT of cranes on offshore vessels. Several cases involving simulation of cranes revealed the lack of an adequate simulation of cable and pulleys suitable for use in a DT. The simulation is important for accurate results and for implementation in control systems. A trade study was performed to determine a numerical method adequate for cable and pulley simulation. The trade study identified the absolute nodal coordinate formulation in the framework of arbitrary Lagrangian–Eulerian as a promising numerical formulation.

Suggested Citation

  • Gaute Fotland & Cecilia Haskins & Terje Rølvåg, 2020. "Trade study to select best alternative for cable and pulley simulation for cranes on offshore vessels," Systems Engineering, John Wiley & Sons, vol. 23(2), pages 177-188, March.
  • Handle: RePEc:wly:syseng:v:23:y:2020:i:2:p:177-188
    DOI: 10.1002/sys.21503
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sys.21503
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sys.21503?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Wongon & Lee, Guesuk & Son, Hyejeong & Choi, Hyunhee & Youn, Byeng D., 2022. "Estimation of fatigue crack initiation and growth in engineering product development using a digital twin approach," Reliability Engineering and System Safety, Elsevier, vol. 226(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:syseng:v:23:y:2020:i:2:p:177-188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6858 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.