IDEAS home Printed from https://ideas.repec.org/a/wly/syseng/v17y2014i1p62-76.html
   My bibliography  Save this article

Functional and Spatial System Model for City Infrastructure Systems: A City.Net IES Case Study

Author

Listed:
  • Adedamola Adepetu
  • Paul Grogan
  • Anas Alfaris
  • Davor Svetinovic
  • Olivier L. de Weck

Abstract

City infrastructure systems have distinct functions but are not isolated from one another, with interactions existing between these systems. Modeling these systems requires a focus on the system functions and interdependencies. Most models focus on system failures rather than the unexpected effects of design decisions in these systems. This paper presents a functional and spatial modeling framework suited for the representation of city infrastructure systems. This framework comprises a systematic process for breaking down the system into fundamental components and defining the relations between the system components. In addition, the spatial feature of the framework facilitates the synthesis, analysis, and evaluation of infrastructures based on their geographical locations and spatial orientations. This system modeling approach is used to design an Integrated Energy System (IES) model in order to exhibit the features of this framework. The IES consists of standard energy system estimation techniques and tools such as MATPOWER for load flow analysis, and is also used to execute a city case study. As a result, the advantages of the functional and spatial framework for modeling city infrastructures are presented.

Suggested Citation

  • Adedamola Adepetu & Paul Grogan & Anas Alfaris & Davor Svetinovic & Olivier L. de Weck, 2014. "Functional and Spatial System Model for City Infrastructure Systems: A City.Net IES Case Study," Systems Engineering, John Wiley & Sons, vol. 17(1), pages 62-76, March.
  • Handle: RePEc:wly:syseng:v:17:y:2014:i:1:p:62-76
    DOI: 10.1002/sys.21251
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sys.21251
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sys.21251?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Girardin, Luc & Marechal, François & Dubuis, Matthias & Calame-Darbellay, Nicole & Favrat, Daniel, 2010. "EnerGis: A geographical information based system for the evaluation of integrated energy conversion systems in urban areas," Energy, Elsevier, vol. 35(2), pages 830-840.
    2. Fatemeh Jahanbani Ardakani & Gholam Riahy, 2011. "Optimum Design of a Hybrid Renewable Energy System," Chapters, in: Majid Nayeripour & Mostafa Kheshti (ed.), Renewable Energy - Trends and Applications, IntechOpen.
    3. S. De Porcellinis & R. Setola & S. Panzieri & G. Ulivi, 2008. "Simulation of heterogeneous and interdependent critical infrastructures," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 4(1/2), pages 110-128.
    4. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerber, Léda & Maréchal, François, 2012. "Environomic optimal configurations of geothermal energy conversion systems: Application to the future construction of Enhanced Geothermal Systems in Switzerland," Energy, Elsevier, vol. 45(1), pages 908-923.
    2. Rajanna, S. & Saini, R.P., 2016. "Modeling of integrated renewable energy system for electrification of a remote area in India," Renewable Energy, Elsevier, vol. 90(C), pages 175-187.
    3. Agnieszka Operacz, 2021. "Possibility of Hydropower Development: A Simple-to-Use Index," Energies, MDPI, vol. 14(10), pages 1-19, May.
    4. L. Hay & A. H. B. Duffy & R. I. Whitfield, 2017. "The S‐Cycle Performance Matrix: Supporting Comprehensive Sustainability Performance Evaluation of Technical Systems," Systems Engineering, John Wiley & Sons, vol. 20(1), pages 45-70, January.
    5. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    6. Fonseca, Juan D. & Commenge, Jean-Marc & Camargo, Mauricio & Falk, Laurent & Gil, Iván D., 2021. "Sustainability analysis for the design of distributed energy systems: A multi-objective optimization approach," Applied Energy, Elsevier, vol. 290(C).
    7. Gottschamer, L. & Zhang, Q., 2016. "Interactions of factors impacting implementation and sustainability of renewable energy sourced electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 164-174.
    8. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "South Korean energy scenarios show how nuclear power can reduce future energy and environmental costs," Energy Policy, Elsevier, vol. 74(C), pages 569-578.
    9. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    10. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    11. Toledo, Olga Moraes & Oliveira Filho, Delly & Diniz, Antônia Sônia Alves Cardoso, 2010. "Distributed photovoltaic generation and energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 506-511, January.
    12. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.
    13. Nguyen, Hai Tra & Safder, Usman & Nhu Nguyen, X.Q. & Yoo, ChangKyoo, 2020. "Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant," Energy, Elsevier, vol. 191(C).
    14. Karytsas, Spyridon & Theodoropoulou, Helen, 2014. "Socioeconomic and demographic factors that influence publics' awareness on the different forms of renewable energy sources," Renewable Energy, Elsevier, vol. 71(C), pages 480-485.
    15. Menon, Ramanunni P. & Paolone, Mario & Maréchal, François, 2013. "Study of optimal design of polygeneration systems in optimal control strategies," Energy, Elsevier, vol. 55(C), pages 134-141.
    16. Maiti, Moinak, 2022. "Does development in venture capital investments influence green growth?," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    17. Amini, Ali & Mirkhani, Nima & Pakjesm Pourfard, Pedram & Ashjaee, Mehdi & Khodkar, Mohammad Amin, 2015. "Thermo-economic optimization of low-grade waste heat recovery in Yazd combined-cycle power plant (Iran) by a CO2 transcritical Rankine cycle," Energy, Elsevier, vol. 86(C), pages 74-84.
    18. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    19. Prasanna, Ashreeta & Dorer, Viktor & Vetterli, Nadège, 2017. "Optimisation of a district energy system with a low temperature network," Energy, Elsevier, vol. 137(C), pages 632-648.
    20. Prehoda, Emily W. & Pearce, Joshua M., 2017. "Potential lives saved by replacing coal with solar photovoltaic electricity production in the U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 710-715.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:syseng:v:17:y:2014:i:1:p:62-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6858 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.